CS294A /W Programming Assignment 1

CS 294A /W, Winter 2011
Programming Assignment: Sparse Autoencoder

All students taking CS294A /W are required to successfully complete this programming assign-
ment by 5:30pm on Wednesday, January 12. Please submit your solution via email to
cs294a-qa@cs.stanford.edu.

Collaboration policy: This assignment should be done individually. It is okay to discuss sparse
autoencoders and neural networks (e.g., the material in the lecture notes) with others. But please
do not discuss anything specific to this programming assignment or to your implementation with
anyone else. Please also do not look at anyone else’s code (including source code found on the
internet), or show your code to anyone else. If you have questions about the assignment or would
like help, please email us at cs294a-qa@cs.stanford.edu.

The collaboration policy stated above applies only to this programming assignment. Once you’ve
submitted your solution, for the research project you’ll be doing you’re welcome (and encouraged)
to talk to anyone about your work and use any open-source/etc. code you find on the internet
(with attribution).

1 Sparse autoencoder implementation

In this problem set, you will implement the sparse autoencoder algorithm, and show how it
discovers that edges are a good representation for natural imagesll The sparse autoencoder
algorithm is described in the lecture notes found on the course website.

In the file cs294a_2011assgn.zip, we have provided some starter code in Matlab. You should
write your code at the places indicated in the files (“YOUR CODE HERE”). You have to complete the
following files: sampleIMAGES.m, sparseAutoencoderCost.m, computeNumericalGradient.m.
The starter code in train.m shows how these functions are used.

Specifically, in this exercise you will implement a sparse autoencoder, trained with 8x8 image
patches using the L-BFGS optimization algorithm.

Step 1: Generate training set

The first step is to generate a training set. To get a single training example z, randomly pick
one of the 10 images, then randomly sample an 8x8 image patch from the selected image, and
convert the image patch (either in row-major order or column-major order; it doesn’t matter)
into a 64-dimensional vector to get a training example x € R54.

Complete the code in sampleIMAGES.m. Your code should sample 10000 image patches and
concatenate them into a 64x10000 matrix.

To make sure your implementation is working, run the code in “Step 1” of train.m. This should
result in a plot of a random sample of 200 patches from the dataset.

Implementational tip: When we run our implemented sampleImages(), it takes under 5
seconds. If your implementation takes over 30 seconds, it may be because you are accidentally

Tmages provided by Bruno Olshausen.



CS294A /W Programming Assignment 2

making a copy of an entire 512x512 image each time you’re picking a random image. By copying
a 512x512 image 10000 times, this can make your implementation much less efficient. While
this doesn’t slow down your code significantly for this exercise (because we have only 10000
examples), when we scale to much larger problems later this quarter with 10 or more examples,
this will significantly slow down your code. Please implement sampleIMAGES so that you aren’t
making a copy of an entire 512x512 image each time you need to cut out an 8x8 image patch.

Step 2: Sparse autoencoder objective

Implement code to compute the sparse autoencoder cost function Jsparse(W,b) (Section 3 of
the lecture notes) and the corresponding derivatives of Jsparse With respect to the different
parameters. Use the sigmoid function for the activation function, f(z) = 1/(1 + exp(—z)). In
particular, complete the code in sparseAutoencoderCost.m.

The sparse autoencoder is parameterized by matrices W) € Rs1*s2 W) ¢ R%2%53 vectors
b e R*, b ¢ R*. However, for subsequent notational convenience, we will “unroll” all of
these parameters into a very long parameter vector § with s1so + sa2s3 + s2 + s3 elements. The
code for converting between the (WM W s 5(2)) and the § parameterization is already
provided in the starter code.

Implementational tip: The objective Jsparse(W,b) contains 3 terms, corresponding to the
squared error term, the weight decay term, and the sparsity penalty. You're welcome to imple-
ment this however you want, but for ease of debugging, you might implement the cost function
and derivative computation (backpropagation) only for the squared error term first (this corre-
sponds to setting A = § = 0), and implement the gradient checking method in the next section
to first verify that this code is correct. Then only after you have verified that the objective
and derivative calculations corresponding to the squared error term are working, add in code to
compute the weight decay and sparsity penalty terms and their corresponding derivatives.

Step 3: Gradient checking

Following Section 2.3 of the lecture notes, implement code for gradient checking. Specifically,
complete the code in computeNumericalGradient.m. Please use EPSILON = 10~* as described
in the lecture notes.

We’ve also provided code in checkNumericalGradient.m for you to test your code. This code
defines a simple quadratic function h : R? — R given by h(z) = 2? + 32112, and evaluates it at
the point x = (4,10)7. Tt allows you to verify that your numerically evaluated gradient is very
close to the true (analytically computed) gradient.

After using checkNumericalGradient.m to make sure your implementation is correct, next use
computeNumericalGradient.mto make sure that your sparseAutoencoderCost.mis computing
derivatives correctly. For details, see Steps 3 in train.m. We strongly encourage you not to
proceed to the next step until you've verified that your derivative computations are correct.

Implementational tip: If you are debugging your code, performing gradient checking on
smaller models and smaller training sets (e.g., using only 10 training examples and 1-2 hidden
units) may speed things up.



CS294A /W Programming Assignment 3

Step 4: Train the sparse autoencoder

Now that you have code that computes Jsparse and its derivatives, we’re ready to minimize Jsparse
with respect to its parameters, and thereby train our sparse autoencoder.

We will use the L-BFGS algorithm. This is provided to you in a function called minFuncE
included in the starter code. (For the purpose of this assignment, you only need to call minFunc
with the default parameters. You do not need to know how L-BFGS works.) We have already
provided code in train.m (Step 4) to call minFunc. The minFunc code assumes that the pa-
rameters to be optimized are a long parameter vector; so we will use the “6” parameterization
rather than the “(W(l), W@y, b(2))77 parameterization when passing our parameters to it.

Train a sparse autoencoder with 64 input units, 25 hidden units, and 64 output units. In
our starter code, we have provided a function for initializing the parameters. We initialize the
biases bz(-l) to zero, and the weights Wi(j) to random numbers drawn uniformly from the interval

|:_\/77fin+716011t+1 , \/nin""’?out"'l } , where n;;, is the fan-in (the number of inputs feeding into a node)

and noy 18 the fan-in (the number of units that a node feeds into).

The values we provided for the various parameters (A, 3, p, etc.) should work, but feel free to
play with different settings of the parameters as well.

Step 5: Visualization

After training the autoencoder, use display network.m to visualize the learned weights. (See

train.m, Step 5.) Run “print -djpeg weights.jpg” to save the visualization to a file “weights. jpg

(which you will submit together with your code).

2 Results

To successfully complete this assignment, you should demonstrate your sparse autoencoder al-
gorithm learning a set of edge detectors. For example, this was the visualization we obtained:

2Code provided by Mark Schmidt.

9



CS294A /W Programming Assignment 4

Our implementation took around 10 minutes to run on a fast computer. In case you end up
needing to try out multiple implementations or different parameter values, be sure to budget
enough time for debugging and to run the experiments you’ll need.

Also, by way of comparison, here are some visualizations from implementations that we do not
consider successful (either a buggy implementation, or where the parameters were poorly tuned):

=
‘“:

|

i i

Ea



CS294A /W Programming Assignment 5

3 What to submit

Please submit your solution by emailing a tar file to cs294a-qa@cs.stanford.edu.

Your submission should include sampleIMAGES.m, sparseAutoencoderCost.m,
computeNumericalGradient.m, weights.jpg (and, if you wish, other files as well). You can
also include a README if there’re notes that you'd like us to look at.

A good solution should should run and produce weights that look like “edge detectors” (as in
the image on the previous page).

4 Contact

This programming assignment is (by design) more open-ended than most assignments you might
have seen in other classes (including CS221 and CS229). If you have questions, don’t understand
parts of it, find parts of it ambiguous, or need help with Matlab, don’t hesitate to email us at
cs294a-qaQcs.stanford.edu to ask for help.

In case you have questions about the lecture notes or want clarifications pertaining to the pro-

gramming assignment, we will also have office hours from 9-10am on Friday, Jan 7th and 9-10am
on Monday, Jan 10th in Gates 110.



	Sparse autoencoder implementation
	Results
	What to submit
	Contact

