CS279 Assignment 3

Code Tutorial



Section 3: Diffusion Simulations




3 Diffusion Simulations

Q u eStI O n 1 O Once we have a model for the structure of a given type of cell, we frequently want to model the

dynamics within the cell. Next, we will look at how biological molecules diffuse throughout cells.

Diffusion is the process by which particles spread out and mix together with other particles. Funda-
mentally, diffusion is governed by the random motion of individual particles. However, by combining

Sta rti n g frO m th eo ri g i n.: At eacC h ti me many particles’ random motions, we can derive deterministic laws that govern the aggregate move-
_t th r_t. | nm .th r ment of a substance through solution.

ste p’ € pa ICle Ca ove el € Let’s start by thinking about motion in one dimension.

- Question 10: Assume there is a single particle on a number line, starting at position 0, and at
left (-1) or right (+1) with equal

re o each time step it mowves left or right by 1 unit with equal probability.

prOba bl | Ity 50 /O Cha nce for eaCh (a) Give the probability distribution over positions at t = 4 and t = 5. In other words, list the
Proba bl | |ty d |Str| butlon . ||St th a‘t probability of the particle being at each possible position, at t = 4 and t = 5 respectively. A

two-column table (one column of position, one column of probability) has historically worked

shows all possible outcomes and welk

Extra Credit: Give a general expression for the probability of the particle being at position

hOW ||ke|y eaCh one |S xz=2a' at timet =t

ct = ] iti i = 2 3 } ]
o Example. t= 1 (b) What Izs .the ezpec[ted position x at time t = t'? What is the expected squared displacement
after t' time steps?

Expected position: where the Fints Thie Diffusion wd, Gellulir-Tevel Sirsilation Hiles Al 16 Nelghi o
partide is ||ke|y to be at a certain Now, let’s consider what happens when we add more particles.

point in time
Expected squared displacement: = —
how far the particle is from the start, e pm::;mty
on average, in terms of the square 0%°
distance R 50%

Probability distribution: t =1




Question 11

n(x, t): try to move from the initial
probability table (where the
starting point was defined) to a
more general expression of one
time step relative to where you’re
currently positioned

Flux (J) = amount of substance
passing through a unit area per
unit time

A concentration gradient can lead
to flux, which then results in
diffusion

Question 11: Under the same model as the previous question, assume we have 1000 particles,
all starting at position 0.

(a) At the first time step, what is the expected number of particles that pass from xz =0 to x =1¢

(b) Let n(z,t) be the number of particles at position x at time t. After 1 time step, what is the
expected number of particles that pass from x = xg to x = xzo+1¢ What is the expected number
of particles that pass from x = zo+ 1 to x = zo? And combining these two numbers, what is
the net movement of particles from x = zg to x =x9+ 12
Your answers should be expressed in terms of n(z,t).

This result underpins “Fick’s Law,” which states that the flux (the net movement of particles across
a unit area per unit time) is proportional to the concentration gradient.

T
oz
where J is the flux, C' is the concentration, and D is a diffusion coefficient and is given in units of
(distance)2 per time.

While it is important to understand that particles move from high concentrations to low concentra-
tions in space — and that this fact can be derived from a simple random motion model — what we’d
really like is a way to express the change in concentrations over time. If we assume that particles
are neither lost nor created, then the change in concentration over time must equal the change in
flux over distance.

oC oJ

ot oz
Using this fact and substituting our first expression for J, we can derive the diffusion equation, which
states that the change in concentration over time is proportional to the change in concentration
gradient over space.

90 _ e
ot~ ox2?

Thus, at a given point in space, the change in local concentration over time is proportional to the
degree to which the concentration gradient changes spatially.




Question 12

Constant concentration gradient:
the concentration increases or
decreases by the same amount
for every unit of distance you
move in the system

Hint: consider all three
concentrations (i.e., what does a
constant gradient mean for the
value, J, of flux?)

This result underpins “Fick’s Law,” which states that the flux (the net movement of particles across
a unit area per unit time) is proportional to the concentration gradient.
oC
Fr= D
dx

where J is the flux, C' is the concentration, and D is a diffusion coefficient and is given in units of
(distance)? per time.

While it is important to understand that particles move from high concentrations to low concentra-
tions in space — and that this fact can be derived from a simple random motion model — what we’d
really like is a way to express the change in concentrations over time. If we assume that particles
are neither lost nor created, then the change in concentration over time must equal the change in
flux over distance.

oc  aJ

ot ox
Using this fact and substituting our first expression for J, we can derive the diffusion equation, which
states that the change in concentration over time is proportional to the change in concentration
gradient over space.

oc  _9C

ot 9x?
Thus, at a given point in space, the change in local concentration over time is proportional to the
degree to which the concentration gradient changes spatially.

Question 12: Assume that concentration changes linearly across a system, such that the concen-
tration gradient is constant: % = k for some constant k. How does the concentration throughout
the system change over time? Explain this macroscopic phenomenon in terms of the motions of
individual particles of the system.




Exercise 9

random() generates a random float
between O and 1

To run: python diffuser.py stoc

Ctrl+C in terminal to stop

Step = essentially. How far the particle
moves with each iteration (determined
by diffusion constant)

def nextX(self,x,step):
return int((x+step)%sself.nX)

def nextY(self,y,step):
return int((y+step)%self.nY)

In the StochasticDiffuser, you will fill in the number of particles at each block (cell) for the
next state (newBlocks) by iterating through the current cell state and randomly assigning a new
direction for each particle to move.

In the LaplacianDiffuser, you will update the “concentration” of particles deterministically based

on the discrete second derivative of the concentrations (also called the Laplacian).

Before you get started, carefully read over the code in diffuser.py. You should understand what
self.blocks represents and where the initial simulation parameters are set, as well as how you
would use the functions self .nextX() and self.nextY().

Exercise 9:  Implement update() in StochasticDiffuser in diffuser.py.

s StochasticDiffuser(Diffuser):

def update(self):
newBlocks = np.zeros((self.nY, self.nX))
for row in range(self.nY):

for col in range(self.nX):
numberOfPart = self.blocks[row, coll]

delta = ceil(self.diffusion)

for part in range(int(numberOfPart)):

= delta - (random() > 0.7)




Exercise 10

h =1 simplifies the ddx, ddy
implementations

ddx[row, col]. difference in
concentration between the
current block and the block
immediately to its right
ddy[row, col]. difference in
concentration between the
current block and the block
immediately above it

Same principles apply for lap_x
and lap_y

Exercise 10:  Implement update() in LaplacianDiffuser in diffuser.py.

Hint: To derive the Laplacian, we will approximate the appropriate derivatives using finite
differences (i.e. % ~ f—(ﬂ,;uﬂ) Specifically, you will approzimate the second derivative of
concentration with respect to z (° %i—g
first derivatives, % and ‘fi—(;. Assume that the values stored in self.blocks represent concentrations.

) ory (%). This means that you will also approzimate the

These approzimations can be numerically unstable if both the first and second derivatives
— r 2 i
are calculated using the same interval, i.e. % = M and % = M

using the same interval between x and x + h. To avoid instability, you will need to balance the
j_f _ f(at+h)—f(z)
T

are

2
derivatives so that they are calculated using different intervals, i.e. and Z—z’; =

dela)-daa=h),




Question 13

To run initial conditions:
o Uncomment desired condition/s
o  Python diffuser.py stoc
o cmd+/ works to
comment/un-comment large blocks of
code

To edit the plotting script as in
13c:

print (usage)
exit(1)

f sys.argv[1] =

iffuser(nX = length,
nY = length,
diffusion = diffusion,

= length,
nY = length,

diffusion = diffusion,
)

print (usage)
exit(1)

Question 13: Run the StochasticDiffuser (python diffuser.py stoc) under a variety of
initial conditions. You can locate pre-populated conditions at the end of diffuser.py, and un-
comment the condition to run.

(a)

(®)

Include your code for update in StochasticDiffuser.
You may remove the comments inside the function if it takes up too much space.

Start with the “Single Particle” simulation. How would you characterize the motion of the
particle? Hint: The scale bar is indicative of how many particles are in a block.

Neat, run the “Point Mass” simulation. What does the state of the diffuser look like after 100
iterations? After 5007

Hint: You can edit the plotting script to make it only plot once after N iterations. You may
include screenshots if it helps your explanation, but this is not necessary.

Can you predict where a specific particle will be after many iterations? Can you predict the
distribution of particles after many iterations?

Convergence occurs when the diffuser reaches a state of equilibrium. Play around with the
diffusion coefficient and starting number of particles. Do either of these parameters affect the
rate of convergence? If yes, identify which parameter(s) affect the rate of convergence and
describe how the rate of convergence changes.

c.setBlock((length//2,length//2),1250)




Question 14: Run the LaplacianDiffuser (python diffuser.py lap) with some of the dif-
fusion conditions in diffuser.py.

Question 14

(a) Include your code for update in LaplacianDiffuser.
You may remove the comments inside the function if it takes up too much space.

Play around with the diffusion coefficient and the starting concentration. Do either of these

® Sta rtl n g CO n Ce ntratl O n . th I rd parameters affect the rate of convergence? If yes, identify which parameter(s) affect the rate

of convergence and describe how the rate of convergence changes.

a rg u m ent In C SetBIOCk Using the “Point Mass” simulation and starting with an initial concentration of 1,250 and a

diffusion coefficient of 0.24, how many iterations does it take for every block (vozel) to have
roughly an equal concentration of particles (i.e. to converge)? Note that our criterion for
convergence is Aconcentration < (e * initial concentration) for all voxels, where ¢ = 0.001
(about 1/1,250). Provide a brief description of how you determined when the simulation
converged.

Hint: You can do an approzimate calculation using the scale bar to estimate the number of
iterations needed for convergence.

Note: We will accept a wide-range of answers, given a sufficient justification.

for i in range(length):
c.setBlock( (i, length//2),125)




Question 15 + 16

Laplacian model of diffusion is
deterministic and based on the
diffusion equation

Particle movement is random in
the stochastic model

Question 15:  As time goes to +o00, what is the probability that the Laplacian model has a block
of concentration 07 What about in the stochastic model — is the probability positive or equal to 07
(Hint: Do NOT try to explicitly compute this probability. We are asking you to use your intuition
based on how these two models work.)

Question 16:  Based on the answer to the previous question, and any other observations you’ve
made, when do you think it would be appropriate to use the Laplacian Model versus the stochastic
model? What are the benefits and drawbacks to each?




