CS279 Assignment 3

Code Tutorial

Section 2: Cellular Structure

Image Analysis, Principal Component Analysis, and Characterization of Keratocytes

Background Info [lecture 8]

Imaging helps us learn about the
structure of cells

o Light microscopy, electron microscopy
Computation is an important part of
imaging techniques and processing
A (grayscale) image can be thought
of as:

o A function of two variables

o A 2D array of brightness values
o A matrix of brightness values

A (color) image can be thought
of/treated as:

o Three separate images, one for each R,
G,B

o A function that returns three values (R, G,

B) for each (x, y) coordinate/pair

2 Cellular Structure

What do we mean when we refer to cellular structure and organization? Unlike the atoms within
a biomolecule, the molecules within a cell do not typically have 3D coordinates that are conserved
within all individual cells of a given type. We know that the overall shape of a given cell (and
the organization of bio-machinery within that cell) is strongly tied to its functionality and chemical

environment.

Humans can observe the variations in cellular structure that occur across cell types, between mu-
tants, and after changes in chemical environment. These observations make for a strong qualitative
analysis, but is it possible to develop a quantitative method for analyzing the structure of cells that
captures this human intuition? Modern image processing techniques and basic statistical procedures
allow us to extract meaningful features of different cell types.

2.1 Microscopy Image Analysis

We’ll begin by displaying some of the microscopy images we will be analyzing. We’ll be working with
three sets of images in this assignment. The first image corresponds to a mitochondrial membrane
structure for rod and cone mitochondria. The second set of images is of caulobacter, a bacterium
which is often used as a model organism to study the cell cycle and differentiation. The third set

of images are of keratocytes, which are mesenchymal-derived cells responsible for maintaining the
collagen scaffold and extracellular matrix of the corneal stroma.

Many of these are grayscale images, where each pixel value represents the observed intensity at the
corresponding (z,y) point. There are many ways to look at images, but we provide you with a
simple script in your imgs folder to display a given file.

Setup

LTS machines:
o If you run your code and get the following error:

(base) lucibresettealLucis-MBP ~ % /Users/lucibresette/opt/anaconda3/envs/
biomedin215/bin/python /Users/lucibresette/Downloads/assn3_starter_code/i
mgs/filter,py
Traceback (most recent call last):

File "/Users/lucibresette/Downloads/assn3_starter_code/ings/filter.py",

line 17, in <module>

import imageio
ModuleNotFoundError: No module named 'imageio’
(base) lucibresette@Lucis—MBP ~ %

o Open terminal and use the command: python3.9 -m pip install
<module_name>
[] In this case, module_name = imageio

Local machines: activate your conda environment & install
required packages:

(cs279) lucibresette@Lucis-MBP ~ %

Switch your interpreter to the new environment:

TODO

R = np.ones((size, size)) / (sizexsize)
return ndimage.convolve(X. R)
Ln1,Col 1 Spaces:2 UTF-8 LF {§ Python 3.9.18 ('cs279': conda)

o Correctness check: celltool -h in terminal prints a help document, and
running filter.py does not yield any ‘ModuleNotFoundError’

Working on LTS Macs

The LTS Macs have all of the necessary software packages already installed. Boot up the
terminal and get started!

If some Python packages (e.g., scikit-image or jmageio) show up as not installed (i.e.
ModuleNotFoundError: No module named ‘imageio’), please use the command python3.9 -m
pip install <module_name> (e.g., python3.9 -m pip install imageio) fo install them.
LTS machines have multiple versions of Python installed, so directly using pip or pip3 may
install the packages for different Python versions and thus not resolve the error.

Working on your local machine

This assumes that you are working on OSx, Linux, or WSL on Windows.
1. Download and unzip the assignment from the course website:
http://web.stanford.edu/class/cs279/index.html#hw
2. Activate your conda environment: conda activate <environment_name>
a. If you have not already created a conda environment, create one: conda create
-y -n <environment_name> python=3.9
Install the Python packages required for the assignment:
a. pip install matplotlib numpy scipy imageio
Install celltool with the following commands:
a. pip install scikit-image
b. pip install git+https://github.com/psuriana/celltool
. You should now be able to run celltool -h in the terminal and see a help document
printed.

Setup

To copy pathname:
o Mac: right-click on file = hold option
key =» ‘copy [filename] as Pathname’
o Press and hold the shift key =»
right-click on folder = “Copy as path
Once in imgs folder:
o Two approaches: use
[imgFolder]/[imgFileName] or ‘copy
pathname’ each time

You won’t be able to put more
commands in the terminal until
you exit the image

LTS users: make sure to use
‘Python3.9’ (no space)

”

To see the images for this assignment, cd into the assignment starter code folder, then cd into the
imgs folder in terminal. Then call the provided show.py file to look at the images in mitochondria,
caulobacter, and keratocytes folders.

Usage:

python show.py <path to image file>

Note: You may have to replace python with python3.9 in order to point to the correct python

version.

Today Today Today Today

B assn3_distributed.zip R diffuser.py [caulobacter [E] mitochondria.png
B assn3_starter_code (1).zip i imgs B filter.py

[assn3_starter_code 2 [masks [keratocytes

i fall22_assn3 M pca ® mitochondria

R ScreenToGif.2...kage.x64.msix B show.py

Setup

Both the original and filtered
images are output, but they might
be on top of each other

The color map on the right maps
the colors in the image to a range
of values; hover over a pixel for
precise values at that location

original image ece filtered image

0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700

Aa€IPQER A €EIPQER

Now, let’s work on doing some image analysis. We'll start by trying to denoise the images using
some of the techniques discussed in class (Image Analysis). In the next few problems and exercises,
you will construct various filters. To run these filters on images, use the filter.py script from your
imgs folder.

Usage:
python filter.py <path to image file> <filter name>

For Exercises 1-4 and Questions 1-3, use the mitochondrial image (mitochondria.png) in the
mitochondria folder. The commands in filter.py will output the original image and the fil-
tered image, which may appear on top of each other. Both will have a color map on the right, which
maps the colors in the image to a range of values.

median(X):

size = 1
return ndimage.median_filter(X,size)

gaussian(X):

std =1
return ndimage.gaussian_filter(X,std)

Exercise 1

Exercise 1: Implement the mean low-pass filter in filter.py. The problem documentation has
more information on what to implement.

Question 1: Play around with the window size: try a 3 x 3 and 6 X 6 array. Test your mean

Low-pass filter: smooths an image by reducing its
P 9 y 9 low-pass filter on the mitochondrial image.

high-frequency components

‘Mean filter’: replaces each pixel value with the average of its
neighbors, including itself

An image can be represented as a 2D array where each

(a) Insert your code for the mean filter (a screenshot works well).

(b) Include a screenshot of the resulting 3 x 3 and 6 x 6 mean-filtered images (please include the
colorbar in your screenshot).

(¢c) In 1-2 sentences, why is it good practice to make the entries in the mean filter sum to 17

element in the array is a pixel value

o In the starter code, this is ‘X’
Create an np.array R: np.ones((num, num))
Col1 Col2 Col3 Col4 -
The size of the matrix defines the ‘neighborhood’ over which PRSP e e e
we’ll be taking the average antatol] st | awtaca{araey
o Size = 1: consider just the pixel ows art2llol] Arrizifa | arri2li2)| rtalts]
o Size = 3: consider immediate neighbors owa Aol arraia | arrtsie) | etaia

Convolution is a mathematical operation that combines two
arrays (in this case, an image and a filter) to produce a third
array (the filtered image)

o In image processing, convolution is like applying a sliding window
over the image and calculating a weighted sum at each position
o Imagine the filter as a smaller window we slide over the image. At

each position, the filter multiplies each corresponding pair of filter &
image pixels, then sums all these multiplied values
o This sum then becomes a single pixel value in the output image

What type of filter, regardless of size, will take the average
of exactly the pixels it is placed over?

Exercise 2

Edit the numbers
Run the code
Evaluate the images with the new

numbers:

o python filter.py
mitochondria/mitochondria.png
median

o python filter.py
mitochondria/mitochondria.png
gaussian

Recommendation: create a
separate doc tracking the
different numbers with
screenshots of the outputs to
refer back to later

Exercise 2: On the mitochondrial image, try out median and gaussian filters with different
sizes and standard deviations respectively. Try to find a size and standard deviation respectively
that create an improved image (as determined by visual inspection). You do not need to submit
anything for this exercise, but understanding filter parameters will help for future questions.

def median(X):

size = 1
return ndimage.median_filter(X,size)

def gaussian(X):

std = 1
return ndimage.gaussian_filter(X,std)

Convolutional filters designed to remove noise are generally referred to as “low-pass” filters, because
E 1 3 they smooth out the original signal, leaving the low frequencies while reducing the high frequencies.
Xe rC I S e What if, instead of denoising the images, we wanted to extract an outline of the cell’s structures?
In this case, we want a “high-pass” filter, which will emphasize abrupt changes in intensity rather
than gradual changes.

The hp filter will convolve the original image with a matriz such as:

. . Exercise 3: Implement the hp and gaussianHP filters.
hp filter:
O

Using the example matrix subtracts
the average of the surrounding pixels R
from the center pixel = more contrast, The gaussianHP filter ezploits the fact that the original image minus a Gaussian low-pass filter
and highlights regions of rapid gives a reasonable high-pass filter.
intensity change

o The higher the c_var, the greater
difference between the central pixel
and the surrounding pixels

o Understanding check: why is the
center factor in the example matrix 8
while the surrounding factors are -1?

gaussianHP filter:
o If you remove the low-frequency
components of an image, you're left
with the high-frequency components

[

ef gaussianHP(X):

Exercise 4

python show.py
caulobacter/WT.tif

o Get a sense of the pixel values by
exploring this image (hover over the
pixels to get coordinates & value)

Element-wise comparison in

NumPy arrays:

someVal =5

Arr=1[0,-1,4,7 8, O]

threshArr = (Arr < 5)

#threshArr = [False, False, False, True,

True, False]

o How to go from boolean values to Os
and 1s?

Some of this exercise will depend
on trial and error

o O O O

Now, take a look at the Caulobacter images in imgs/caulobacter. These images were collected
using phase-contrast microscopy, which gives us very good contrast between “Cell” and “Not Cell”,
but poor contrast within the cell. This property allows us to extract the outlines of the cells with
a simple threshold filter.

Exercise 4: Implement the threshold filter. You should select a threshold value where the
contrast is clearest and then set all values above this threshold to 0 and all below this threshold to
1. This will invert the image so that the dark cells appear with a pizel value 1 (a lighter color)
and the background appear with a pizel value 0 (a darker color). Note that the color representation
may depend on your image color map.

Question 3: Test your implementation of the threshold filter on the mitochondrial image.

(a) Include your code for the threshold filter.

(b) Include a representative screenshot of the output of your threshold filter.

(¢) In 1-2 sentences, explain how you derived your threshold value and note what your final thresh-
old value was.

ief threshold(X):

Questions 4 & 5

e [if currently in imgs]:
o cd..
o cd masks

[(cs279) lucibresette@Lucis-MBP imgs % cd ..
[(cs279) lucibresette@PLucis-MBP assn3_starter_code % cd masks

(cs279) lucibresette@Lucis-MBP masks % [J

e Python show.py

caulobacter/WTOO.tif
o WTOO to WT18

e To use show.py: use full
pathname

o Otherwise, can view images as

normal

[(cs279) lucibresette@Lucis-MBP imgs % python show.py /Users/lucibresette

ds/assn3_starter_code/masks/caulobacter/WTee.tif

2.2 Principal Component Analysis of Caulobacter Cells

In the next section, we’ll use binary masked images, like the ones we generated in the last exercise
to analyze cell shapes with caulobacter images. In the masks folder, there are sequences of binary
caulobacter images that have already been processed so that any part of the image that is a cell is
completely white (= 1) and all other parts of the image are completely black (= 0).

Let’s start by making some qualitative observations.

Question 4: Describe the shapes of the cells that you see. In particular, what attributes of an
individual caulobacter cell’s shape would allow you to distinguish it from the others?

Now that we have some sense for what the cells in our data set look like, we’ll use the software
Celltool to help us make these qualitative observations quantitative. Celltool has tools to represent
cell shapes as outlines. The first thing we need to do is extract this outline or “contour".

Question 5:
Go in to the masks folder.
cd masks

FExtract the contours from caulobacter as follows. If copy/pasting this command, make
sure that the underscore is there and that the spacing is right so that the command line arguments
are parsed correctly!

celltool extract_contours \

--resample-points=100 --smoothing-factor=0.001 \

--destination=cauloContours caulobacter/*.tif

Then, run the following command to plot the contours into an svg file.
celltool plot_contours \
--output-file="cauloContours.svg" cauloContours/*.contour

Include a screenshot of cauloContours.svg in your writeup. (It’s easiest to view .svg files
by opening them from your folder using Chrome or another web browser)

You should now have a file in the folder called cauloContours.svg. Take a look at this file. You
should see the outlines of a number of cells laid across the image. It will also be helpful to look
at one of the .contour files in the cauloContours folder. These files can be viewed in your native
text editor software (i.e TextEdit for Mac).

In particular, note that these outlines are saved as an array of (x,y) points. In order to be able to
compare and contrast these vectors of points, we must align the vectors such that the ith point in
each vector corresponds to an analogous point in each cell.

Questions 4 & 5

Full pathname:
/Users/lucibresette/Downloads/assn3_s
tarter_code/masks

Recommendation: type command rather

than copy/paste
o Alternatively, copy into a separate
document/app, edit, then copy into terminal
o The\ character is a newline and does not
need to be copied
Functionality checks:
o After first command: cauloContours folder
created
o After second command: masks contains
cauloContours.svg
m Open with » google chrome

To open a .contour file: select any file in
the cauloContours folder = Open with =
TextEdit (or any other text editor)

2.2 Principal Component Analysis of Caulobacter Cells

In the next section, we’ll use binary masked images, like the ones we generated in the last exercise
to analyze cell shapes with caulobacter images. In the masks folder, there are sequences of binary
caulobacter images that have already been processed so that any part of the image that is a cell is

completely white (= 1) and all other parts of the image are completely black (= 0).

Let’s start by making some qualitative observations.

Question 4: Describe the shapes of the cells that you see. In particular, what attributes of an
individual caulobacter cell’s shape would allow you to distinguish it from the others?

Now that we have some sense for what the cells in our data set look like, we’ll use the software
Celltool to help us make these qualitative observations quantitative. Celltool has tools to represent
cell shapes as outlines. The first thing we need to do is extract this outline or “contour".

Question 5:
Go in to the masks folder.
cd masks

FExtract the contours from caulobacter as follows. If copy/pasting this command, make
sure that the underscore is there and that the spacing is right so that the command line arguments
are parsed correctly!

celltool extract_contours \

--resample-points=100 --smoothing-factor=0.001 \

--destination=cauloContours caulobacter/*.tif

Then, run the following command to plot the contours into an svg file.
celltool plot_contours \
--output-file="cauloContours.svg" cauloContours/*.contour

Include a screenshot of cauloContours.svg in your writeup. (It’s easiest to view .svg files
by opening them from your folder using Chrome or another web browser)

You should now have a file in the folder called cauloContours.svg. Take a look at this file. You
should see the outlines of a number of cells laid across the image. It will also be helpful to look
at one of the .contour files in the cauloContours folder. These files can be viewed in your native
text editor software (i.e TextEdit for Mac).

In particular, note that these outlines are saved as an array of (x,y) points. In order to be able to
compare and contrast these vectors of points, we must align the vectors such that the ith point in
each vector corresponds to an analogous point in each cell.

Exercise 5:
Align the extracted contours using the following command.

E Xe rC i S e 5 celltool align_contours \

--allow-reflection \
--destination=cauloAligned cauloContours/*.contour

Then plot these aligned contours.

Y F u N Cti O N a | ity C h eC k: celltool plot_contours --color-by=points \

--output-file="cauloAligned.svg" cauloAligned/*.contour

e) After flrst SeCtIOn folder Note: You do not need to submit caulodligned. svg.

. . R N s Open cauloAligned.svg. The cells should now be aligned, where the indices of points along one
cau |OA| |g ned Created N maSkS cell’s outline generally correspond to analogous points on other cells’ outlines. Note that a cell’s
. contour is colored by the point ordering of it vertices. Now that we have a consistent representation

O After secon d section: of the cells, we can begin analyzing the cells quantitatively.
¢ . ’ " ’ Before talking about our specific data, we should first discuss the main technique that Celltool
ca U|OA||gnedSVg Created n maSkS will use to build a model for the cells: Principal Component Analysis (PCA). Recall from the
. . . Image Analysis lecture (particularly slides 35-38) that PCA is a statistical procedure that identifies
o P rl n CI p a | CO m po n e nt a n a |yS I S . a low-dimensional space that can be used to provide a reasonably accurate description of a high-

dimensional data set. Let X be our data set of n-dimensional points. Intuitively, we want to find

an n-dimensional vector, ¢, that maximizes the spread between all the points in X when they are

40

ESSG nt|a | |y, b -Z_ projected onto a line of slope el
. e pe Formall he first principal component is defined for a data set X centered about the origin as
|dent|f|es a) fDHows.y7 the first princip P t is defined f t. t tered tt igi
Cc1 = argmax 1"C2
lower-dimensional S
space to describe a B l.e., find a straight line (defined by the vector c) such
high-dimensional that when all the points are ‘projected’ or ‘dropped’ on
dataset ' this line, they are spread out as much as possible
LN ~20 ’ ¥

Recall that a dot product is greatest in absolute value when = and ¢ point along the same axis.
Thus, because we as X has mean 0 in every coordinate, maximizing the sum of sanared
dot products results in choosing a dircetion, ¢, which maximizes the overall variane after projection.

We'll see that maximizing the variance preserved from the data. set allows 1 to reduce onr repre-
sentation of the data while minimizng the error that s ntroduced. To gel o seuse of what this

°
definition means in practice, consider the Tollowiug example
by running: python pea/plotData.py. Typically, we would describe the coordinates of the points

as (2, y) pairs with the bottom left comer at (0,0) moving upwerd towards the upper right corer
at (6, 5),

e Have to cd out of masks before
running python pca/plotData.py:

o [from masks directory] cd ..
o Or, use full pathname: python

/U Se rS/l u Cl b resette/DOWH |Oa d S/a SS n 3 Question 6: Suppose, to simplify our representation, we wanted to only store one value for

each coordinate while maintaining our ability to distinguish between points as much as possible.

_Sta rte r_COd e/pca/p|OtData . py (a) Clearly, one solution would be to save just the xz-coordinate or just the y-coordinate. These

solutions project the data onto the lines y = 0 and x = 0 of slope 0 and oo, respectively. cd

. T h e n . into your pca folder. Use the project.py script in the pca folder to see what the data looks
. like under these projections. Note: This command will produces two plots, which may appear

stacked on top of each other.

@) Cd . cd <assignment folder path>/pca

python project.py O

python project.py inf

©) S h ou | d be IN assl g nme nt fO | d er Look at the output of the command in your terminal window. What is the empirical variance

after projection in each case?

d I reCtO ry The choice to project onto x =0 and y = 0 was arbitrary. By picking the projection line more
carefully, we should be able to preserve more of the variance in the data points. Play around

(@) Ca n th en ru n pyth O n prO‘JeCt. py O’ with different slope values. What slope, rounded to the nearest tenth, mazimizes the variance

preserved? What is the empirical variance of the data under this projection?

python p rOJeCt. py inf The slope you found in the last part is precisely the first principal component — the line that

mazimizes the spread of points after projection. The second principal component is defined
similarly after removing the variation in data points according to the first principal component.
In particular, the next principal component must be orthogonal (perpendicular) to the first,
regardless of the number of dimensions. (You should convince yourself of this fact.) What is
the slope and variance preserved of the second principal component?

Hint: What’s the relationship between perpendicular lines and their slopes?

Submit a plot of the data projected onto the first principal component and onto the second
principal component.

Note that because the data we worked with in the previous question was only 2-dimensional, there

are only 2 principal components. In general, if we are dealing with n-dimensional vectors, there

EXe rC i S e 6 will be n principal components. In the case of our cells, where we use 200 Value§ (IOU.X,y pairs) to
represent each cell, there will be 200 principal components, which are each 200-dimensional vectors,

which capture all of the variance in the set of cell images. That said, the hope is that the majority

of the variance is captured by the first few principal components. If this is the case, then we will

. have a succinct way of representing and discriminating between individual cells.
e (o back into masks folder:

Now, we will jump back to using Celltool to investigate the data set of cells.

i . Exercise 6: Go back to the masks folder and run the following commands, which should extract
© lf cu rrently In pca f0|der the first two principal components of cells’ shape from the contours you generated before.
] Cd .. celltool shape_model --variance-explained=0.95 \
--output-prefix="cauloModel" cauloAligned/*.contour
[] Cd maSkS Then plot the model.
celltool plot_model "cauloModel.contour"
o Or, use full pathname: cd

/Users/lucibresette/Downloads/assn3
_starter_code/masks

e [Functionality checks:
o For the first part: file

‘cauloModel.contour’ created in
masks folder

o Second part: cauloModel.svg created
in masks folder

Exercise 7/

Navigate to the masks folder:
o As full path:
/Users/lucibresette/Downloads/assn3
_starter_code/masks

Functionality checks:

o After first block: folder ‘kContours’
created inside ‘masks’

o After second block: folder ‘kAligned’
created inside ‘masks’

o After third block: files
‘kModel-normalized-positions.csv’,
‘kModel-positions.csv’, and
‘kModel.contour’ created in ‘masks

o After fourth block: ‘kModel.svg”
created inside ‘masks’

2.3 Characterization of Keratocytes

Now we’d like to use Celltool to characterize cells based on their shape. For this section, let’s use
the following hypothetical situation as context. We’ve collected images of keratocytes grown in two
different media: one in normal media and the other in media diluted to 25% the concentration.
Unfortunately, we were not careful in the lab and we mixed up which images correspond to which
condition. We also happened to take images of keratocytes grown in another chemical condition
that causes a similar osmotic stress on the cells as growing in 25% media. Thus, these cells should
look more similar to one another than to the normal cells. We'd like a quantitative method to
identify which images correspond to which condition.

Exercise 7: Inside the masks/keratocytes folder the prefiz of each image corresponds to the
growing conditions, unknowns A and B and known chemical environment X . Build a shape model
from your masks folder for the whole data set that will allow you to observe differences in the
cell types. Navigate to the masks folder.

cd <assignment folder path>/masks/

Then, run the following commands to generate the model.

celltool extract_contours --resample-points=100 \
--smoothing-factor=0.001 \
--destination=kContours keratocytes/*/x.tif
celltool align_contours --allow-reflection \
--destination=kAligned kContours/*.contour
celltool shape_model --variance-explained=0.90 \
--output-prefix="kModel" kAligned/*.contour
celltool plot_model "kModel.contour"

Take a look at kModel.svg.
Note: You can ignore the Warning: Contour alignment did not converge after 10
iterations warning after the align_contours command if it appears.

Now that we have a model that characterizes the top principal components, we can plot the images

as points on the axes of these components. (We’ll plot along the first two principal components for

Exe rC i S e 8 ease of visualization.)

Exercise 8: Run the following commands to measure the average area of each cell type and
degree of each principal component present for each cell type.
celltool measure_contours --output-file="A.csv" \

. F u n Cti O n a | ity C h eCkS (n Ote th ese --area --shape-modes kModel.contour 1 2 - kAligned/A*.contour

celltool measure_contours --output-file="B.csv" --area \
a re a | | i n ‘th e ¢ m aS kS’ fo | d e r): --shape-modes kModel.contour 1 2 - kAligned/B*.contour
celltool measure_contours --output-file="X.csv" --area \
e) Af-ter ﬂrst blOCk flle ‘A.CSV, Cl’eated --shape-modes kModel.contour 1 2 - kAligned/X*.contour
Then plot the distribution of cell types along the axes of the principal components as follows.
e} After Second block: f”e ‘B.CSV, Created celltool plot_distribution --x-column=3 --y-colu.mn=4 N\
--output-file="dist.svg" A.csv B.csv X.csv kAligned/*.contour
0 Af-ter ’[hll’d blOCk: f||e ‘X.CSV, Created Finally, plot the distribution of areas of the cells as follows.
celltool plot_distribution --x-column=Area \
o After fourth blOCk ﬂle ‘dIStSVg’ --output-file="areas.svg" A.csv B.csv X.csv

created
o After fifth block: file ‘areas.svg’
created

