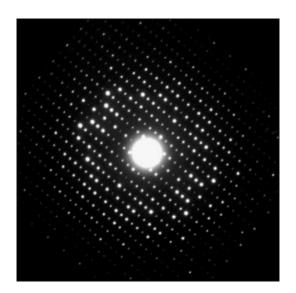
X-ray crystallography

CS/CME/BioE/Biophys/BMI 279 Nov. 28, 2023 Ron Dror

Outline

- Overview of x-ray crystallography
- Crystals
- Electron density
- Diffraction patterns
- The computational problem: determining structure from the diffraction pattern


Overview of x-ray crystallography

X-ray crystallography is the most common way to determine 3D molecular structures

- About 85% of the structures in the PDB were determined through x-ray crystallography
- X-ray crystallography is also frequently used to determine 3D structures of small molecules (including drugs)
- Why are we covering it in this course?
 - So you know where biomolecular structures come from
 - Because determining a structure this way involves solving a challenging computational problem
 - When crystallographers determine a structure, they typically say they "solved" the structure

The basic idea

- Make a crystal composed of the molecule whose structure you wish to determine
- Shine an intense beam of x-rays through the crystal, giving rise to a "diffraction pattern" (a pattern of spots of varying brightnesses)



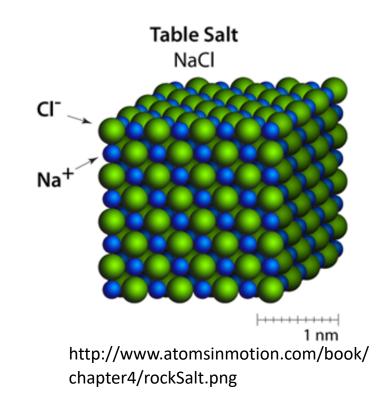
Note: I will often refer to the molecule being studied as "the protein" in this lecture, but it could be any molecule, or a complex of multiple molecules bound together (e.g., protein+ligand)

http://lacasadeloscristales.trianatech.com/wpcontent/uploads/2014/09/image005-300x300.jpg

The basic idea

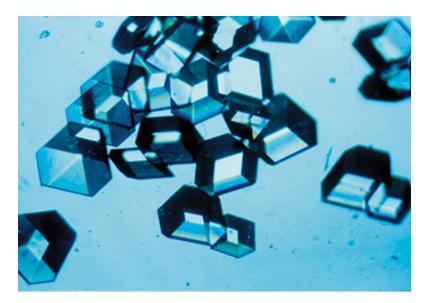
- From that pattern, infer the 3D structure of the molecule
 - The diffraction pattern is 3D: one uses multiple images, with the x-rays shining through the crystal at different angles
- This is a challenging computational problem!
- It turns out the diffraction pattern is closely related to the *Fourier transform* of the electron density of the molecule that was crystallized
 - Before talking about what that means, let's go back and discuss what a crystal is and what electron density is

http://lacasadeloscristales.trianatech.com/wpcontent/uploads/2014/09/image005-300x300.jpg


Crystals

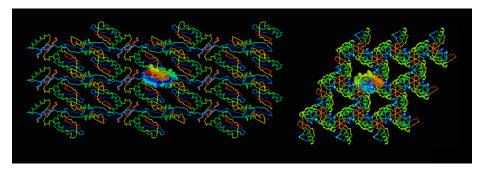
What's a crystal?

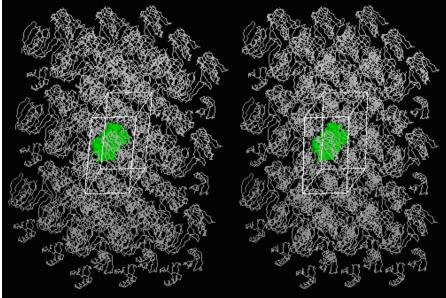
- Under certain conditions, molecules come together to form a regular grid (a "lattice").
 - Example: table salt


http://www.bigfoto.com/miscellaneous/ photos-16/salt-crystals-94jf.jpg

Macromolecules can also form crystals

 Under certain conditions, proteins and other macromolecules will pack into a regular grid (a lattice)

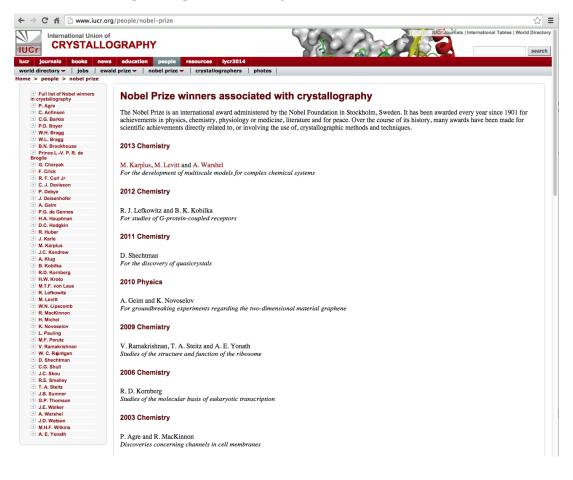

Insulin crystals



http://science.nasa.gov/media/medialibrary/ 1999/09/10/msad20sep99_1_resources/ 9901879.jpg

Macromolecules can also form crystals

Multiple views of the crystal formed by an immunoglobulin-binding domain (PDB entry 1PGB)



http://www.umass.edu/molvis/decatur/pe2.727/ protexpl/xtlcon.htm

Caveats

- Getting macromolecules to form crystals can be hard
 - Crystallographers have sometimes worked for decades to get good crystals of a particular protein

More recent Nobel Prizes

 ${\bf 2021} \ P{\rm Hysiology} \ {\rm or} \ M{\rm edicine}$

D. Julius and A. Patapoutian

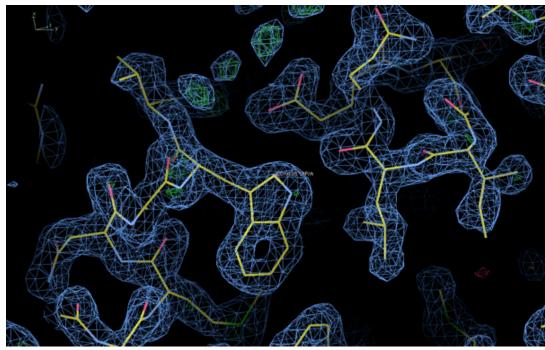
For their discoveries of receptors for temperature and touch

2020 CHEMISTRY

J. A. Doudna and E. Charpentier For the development of a method for genome editing

2016 CHEMISTRY

J.-P. Sauvage, J. F. Stoddart and B. L. Feringa For the design and synthesis of molecular machines

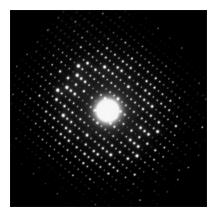

Caveats

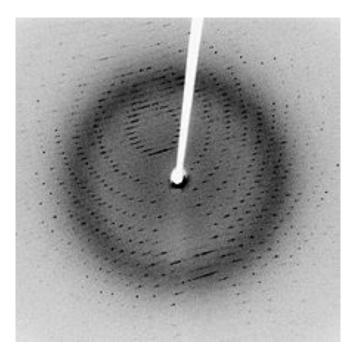
- Crystallography gives you a static snapshot of a molecule's structure
 - Usually this snapshot corresponds to the molecule's "average" structure
- Sometimes a molecule will adopt a different average structure in a crystal than it does in its natural environment
 - Fortunately, these differences are usually small

Electron density

Electron density of a molecule

- The *electron density* corresponding to the 3D structure of a molecule gives the probability of finding an electron at each point in space
- X-rays bounce off electrons they hit

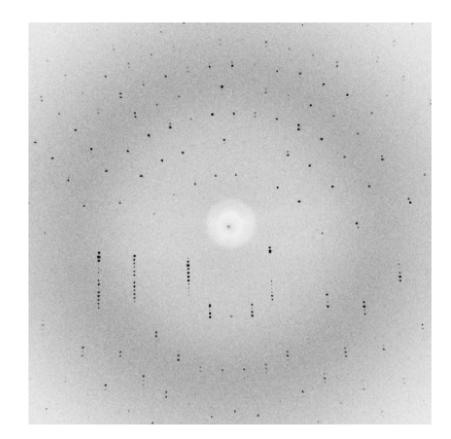



http://www.lynceantech.com/images/ electron_density_map.png

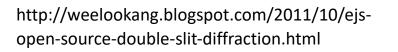
Diffraction patterns

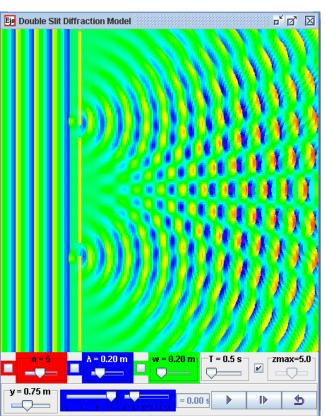
Diffraction patterns

 When you shine a light beam through a crystal, you get a distinctive pattern of bright spots called a diffraction pattern

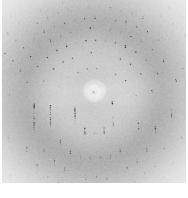


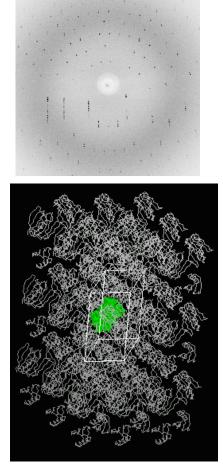
Note that the bright spots are sometimes pictured in light/white shades (left) and sometimes in dark/black shades (right)


Diffraction patterns


- This pattern is actually three dimensional.
 - If you rotate the crystal (or move the camera), you see different parts of it

What causes diffraction patterns?


- Short answer: interference of light
 - The bright spots are places where light interferes constructively. Elsewhere it tends to interfere destructively (cancel out).


Relationship between diffraction pattern and electron density

- It turns out that the diffraction pattern is the *Fourier transform* of the electron density
 - Both the electron density and the diffraction pattern are functions of three dimensions (i.e., defined at every point in a 3D volume)
 - Each bright spot in the diffraction pattern corresponds to one sinusoidal component of the electron density (in 3D)
 - The Fourier transform gives a magnitude and a phase for each sinusoid, but it's only practical to measure the magnitude, not the phase
 - Brightness of the spot gives the magnitude

Why is the diffraction pattern the Fourier transform of the electron density?

- If you work out how much each point in the electron density contributes to a particular diffraction peak, the answer is a sinusoid (whose period fits into the unit cell an integer number of times in each dimension, so that each unit cell contributes equally).
- In between the peaks, each unit cell contributes differently, resulting in destructive interference.
- For a more detailed explanation, see Notes on course web site.

You need to understand the Fourier transform relationship, but not why it holds

The computational problem: determining structure from the diffraction pattern

The challenge

- Given a diffraction pattern, determine the electron density and/or the position of each atom
- If we had a magnitude and a phase associated with each spot in the diffraction pattern—and thus with each 3D sinusoid—then we could just sum up appropriately scaled and shifted 3D sinusoids to recover the electron density
- But we don't have the phases
 - This makes the problem "underdetermined"—in principle, multiple electron densities could give rise to the same diffraction pattern (i.e., same magnitudes for each spot)

Why is it possible to solve this problem?

- In principle, multiple electron densities could give rise to the observed diffraction pattern
- But the vast majority of those won't correspond to reasonable 3D structures
- For example, we know that:
 - Electron density should never be negative
 - Electron density should correspond to the atoms in the crystallized protein/macromolecule
 - And, perhaps, other atoms present when the crystal formed
 - Atoms connected by a covalent bond will be near one another
- The goal is to find a 3D structure that is both physically reasonable and consistent with the observed diffraction pattern
- Discuss: How would you do this?

General approach to solution

- Step 1: Initial phasing
 - Come up with an approximate solution for the structure (and thus an approximate set of phases)
- Step 2: *Phase refinement*
 - Then consider perturbations to the structure
 - Search for perturbations that improve the fit to the experimental data (the diffraction pattern)

Initial phasing

- The most common method for initial phasing is molecular replacement
 - Start with a computational model of the protein's structure (e.g., the structure of a homologous protein, or an AlphaFold 2/ RoseTTAFold structure)
 - Search over the possible ways that a protein with this structure could be packed into a crystal, and find the one that gives the best fit to the data
- If one can't build a good computational model, then one can try various experimental methods to help determine phases
 - Example: *isomorphous replacement*, where one replaces several atoms of the protein with heavier atoms (usually metals), and then uses the *change* in the diffraction pattern to solve for the phases

Phase refinement

- Once we have an initial model, we can search for perturbations to that model that improve the fit to the experimental data
 - One usually restrains the search to "realistic" molecular structures using a molecular mechanics force field
 - Search for a structure that minimizes the sum of two terms: (1) difference between the observed diffraction pattern and the diffraction pattern calculated from the structure, (2) the calculated energy of the structure
 - This dramatically improves the accuracy of the results
 - The idea was introduced by Axel Brunger, now on the Stanford faculty
 - The search is usually done by Monte Carlo sampling, with simulated annealing

Phase refinement

- A major challenge in the phase refinement process is to avoid overfitting—i.e., fitting to the noise in the experimental measurements
- To avoid overfitting, one generally ignores a small subset of the experimental data during the refinement process, then checks how well one can predict it at the end
 - Just like cross-validation in machine learning
 - This idea also came from Brunger (who introduced the term R_{free} to quantify the error in the prediction)

Computational methods continue to improve

• Although the phasing problem is decades old, researchers are still inventing better solutions

nature

Vol 464 22 April 2010 doi:10.1038/nature08892

Super-resolution biomolecular crystallography with low-resolution data

Gunnar F. Schröder^{1,2}, Michael Levitt² & Axel T. Brunger^{2,3,4,5,6}

NOVEMBER 2013 | NATURE METHODS

nature methods

Improved low-resolution crystallographic refinement with Phenix and Rosetta

Frank DiMaio^{1,6}, Nathaniel Echols^{2,6}, Jeffrey J Headd², Thomas C Terwilliger³, Paul D Adams^{2,4} & David Baker^{1,5} Article

https://doi.org/10.1038/s41592-022-01645-6

6

Improved AlphaFold modeling with implicit experimental information

Received: 2 February 2022 Accepted: 9 September 2022 Thomas C. Terwilliger ^{0,12} ⊠, Billy K. Poon³, Pavel V. Afonine³, Christopher J. Schlicksup³, Tristan I. Croll ^{0,4}, Claudia Millán⁴, Jane. S. Richardson ^{0,5}, Randy J. Read ^{0,4} and Paul D. Adams ^{0,3,6}

Published online: 20 October 2022

A few additional notes

- Protein crystals contain water
 - Often half the crystal is water (filling all the empty spaces between copies of the protein)
 - Usually only a few water molecules are visible in the structure, because the rest are too mobile
- One generally can't determine hydrogen positions by x-ray crystallography

- But one can model them in computationally

 Some high-profile, published crystal structures have turned out to be completely incorrect due to computational problems/errors