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Goals of ligand docking
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A drug binding to its target 
(The great majority of drug targets are proteins)

Beta-blocker alprenolol binding to an adrenaline receptor
Dror et al., PNAS 2011



Problem definition
• A ligand is any molecule that binds to a target macromolecule 

(e.g., a protein or RNA drug target) 
– We’ll also use ligand to refer to any molecule (e.g., any candidate drug) 

that might bind to a given macromolecule 
• Ligand docking addresses two problems: 

– Given a ligand known to bind a particular protein, what is its binding pose 
(that is, the location, orientation, and internal conformation of the bound 
ligand—basically, the position of each ligand atom when bound) 

– How tightly does a ligand bind a given protein (or other macromolecule)?
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Why is docking useful in drug discovery?

• Virtual screening: Identifying drug candidates by 
considering large numbers of possible ligands 

• Ligand optimization: Modifying a drug candidate 
to improve its properties 
– Docking can predict the candidate molecule’s binding 

pose, which helps envision how modifying that 
molecule would change its binding strength and/or 
alter its effect on the target protein 

– Docking can predict binding strengths of related 
candidate molecules
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Ligand docking: a graphical summary
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Defining binding affinity (strength)

8



How do we specify how tightly a ligand 
binds to a protein? 

• Binding affinity quantifies the binding strength 
of a ligand to a protein (or other target) 
– Conceptual definition: if we mix the protein and the 

ligand (with no other ligands around), what fraction of 
the time will the protein have a ligand bound? 
• This depends on ligand concentration, so we assume 

that the ligand is present at some standard 
concentration.



Binding affinity can be expressed in two ways

• A dissociation constant (KD), which is (roughly) the ligand 
concentration at which half the protein molecules will have 
a ligand bound 
– For example, a “1 nanomolar (1 nM) binder” is a ligand that will 

occupy the binding site half the time at a concentration of 1 nM 
(i.e., 10–9 moles per liter) 

– This is the most common way to express affinity 
• The difference ΔG in free energy of the bound state (all 

atomic arrangements where the protein has a ligand 
bound) and the unbound state (all other atomic 
arrangements)  
– Typical units are kcal/mol or kJ/mol 
– Again, assume standard concentration of ligand 
– From ΔG, one can compute the fraction of time the ligand will be 

bound 10



Binding affinity: Clarifications 

• Binding affinity is different from “how long the ligand remains 
bound” (the off-rate) or “how quickly the ligand binds” (the on-rate) 
– Binding affinity is a ratio of the on-rate and off-rate; you can’t 

calculate it from either one alone 
– These rates are also of interest in drug discovery, and 

predicting them is a different (and even more challenging) 
computational problem 

• Binding affinity is different from “how strong are the inter-atomic 
forces between the ligand and the target when the ligand is bound” 
– Binding affinity also depends a great deal on what happens 

when the ligand isn’t bound (e.g., how favorable are the 
interactions of the ligand and the binding pocket with water)
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Computing binding affinity:  
Simplifying the problem
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A hypothetical direct approach to computing  
binding affinity

• Run a really long molecular dynamics (MD) 
simulation in which a ligand binds to and unbinds 
from a protein many times. 

• Directly observe the fraction of time the ligand is 
bound.
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This direct approach rarely works
• It is so computationally intensive that we usually 

cannot do it for even a single ligand, let alone 
millions 
– The toughest part is the unbinding (dissociation) 

• Drug molecules usually take seconds to hours to unbind 
from their targets.   

• Microsecond-timescale molecular dynamics simulations 
usually take days.  

– We’d have to simulate many cycles of binding and 
unbinding. 

• It is also limited by force field accuracy 
– Most molecular mechanics force fields are less accurate 

for small-molecule ligands than for proteins
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Question to discuss

• How would you compute a binding affinity? 
– Suppose you’re given the structure of a target protein, 

and you want to compute the affinity of a particular 
ligand to that protein 

– To simplify the problem a bit, you may also assume 
that you’re given the binding pose
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Standard ligand docking 
(most common method to predict ligand binding affinity)

• Ligand docking is a fast, heuristic approach with 
two key components 
– A scoring function that very roughly approximates the 

binding affinity of a ligand to a protein given a binding 
pose 

– A search method that searches for the best-scoring 
binding pose for a given ligand  
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Standard ligand docking 
(most common method to predict ligand binding affinity)

• To predict the binding affinity of a ligand: 
– Docking software searches through poses of the 

ligand to find the pose with the best score 
– That pose is the predicted pose of the ligand, and its 

score is the predicted affinity 
• Here affinity is expressed as a binding energy:  

the lower the score, the more tightly the ligand binds
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Standard ligand docking 
(most common method to predict ligand binding affinity)
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Note that for docking to run reasonably quickly, one needs a good 
search strategy for the sampling step. One might iterate between 
generating candidate poses and scoring them.

Figure credit: 
Ayush Pandit and Joe Paggi



Ligand docking is approximate! 

• For example, most ligand docking methods 
assume that the target protein is rigid and don’t 
explicitly consider water molecules 

• In reality, protein mobility, ligand mobility, and 
water molecules all play a major role in 
determining binding affinity 
– Docking is approximate but useful 
– The term scoring function is used instead of energy 

function to emphasize the highly approximate nature of 
the scoring function   
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Docking software (a partial list)

http://en.wikipedia.org/wiki/
Docking_(molecular)

Most popular  
(based on citations 
2001–2011): 

AutoDock 
GOLD 
DOCK 
FlexX 
Glide 
FTDOCK 
QXP

Sousa et al., Current 
Medicinical Chemistry 
2013 

Optional material



Standard ligand docking methodology
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Scoring functions

• Scoring functions used for docking typically capture 
chemists’ intuition about what makes a ligand–
target interaction energetically favorable. For 
example: 
– Hydrogen bonding 
– Hydrophobic interactions 

• Parameters are fit based on known ligand–target 
structures and affinities  

• These scoring functions are (very rough) attempts 
to approximate the binding free energy 
– By contrast, molecular mechanics force fields give 

potential energy associated with a particular 
arrangement of atoms



Example: Glide scoring function

• Glide (widely used commercial docking software) uses the 
following “GlideScore” function: 

– The first term rewards contacts between hydrophobic atoms of the 
ligand and protein, and is a function of the distance between them 

– The next three terms reward specific kinds of hydrogen bonds, and 
are functions of both distance and angle for each hydrogen bond 

• Glide uses many additional terms as well

Friesner et al., Journal of 
Medicinal Chemistry 
47:1739-49 (2004)

Optional material



Search methods

• Docking software searches for the best-scoring 
pose for each ligand 

• The search space is huge, because one needs to 
consider all combinations of ligand position, ligand 
orientation, and ligand conformation (shape) 

• To search this space efficiently, docking software 
typically employs either or both: 
– Hierarchical methods in which one uses approximate 

measures to identify promising groups of poses, then 
evaluates subgroups in more detail 

– Monte Carlo methods
24



Example: Glide search
• Glide uses a hierarchical 

search method 
• It first identifies a set of 

“reasonable” conformations for 
each ligand, by varying internal 
torsion angles 

• For each ligand, it scans 
possible positions and 
orientations, using a rough 
measure of fit to binding pocket 

• The most promising 
approximate poses undergo 
further “refinement” 

• Candidate poses are ranked by 
the scoring function

25
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Virtual screening
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Virtual screening: the basics

• Goal: identify ligands that bind to a target—
particularly ligands that are very different from 
any known binder 

• Typical process 
– Select a virtual library of chemical compounds 
– Use docking to estimate the affinity of each  
– Buy or make the compounds with the best predicted 

affinities and do experiments to test how well they bind 
– Optional: Optimization of experimentally validated binders 

by testing related chemical compounds
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Virtual screening: the basics

28Figure credit: 
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New: “Ultra-large” virtual libraries

• In virtual screening, one typically uses libraries of 
compounds that can be easily ordered from vendors, so 
that one can easily test the top-ranked ones  

• A few years ago, a few million compounds were available 
from vendors  

• Now it’s billions or trillions 
– Thanks to the advent of the make-on-demand approach 

(pioneered by Enamine in Ukraine) 
– Idea: gigantic library of compounds that have not yet been made 

but that vendor can make quickly and cheaply with high probability 
• This has increased the utility of virtual screening 

– A few million compounds can be tested experimentally by “high-
throughput screening” robots, but this doesn’t scale to billions and 
requires that all the compounds be synthesized in advance



Alternatives methods and  
current research directions
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MD-based approaches 
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https://www.theguardian.com/technology/2015/jan/23/german-scientists-
teleporter-transporter-3d-printing-star-trek



MD-based approaches 
• It turns out that one can compute binding affinities by 

molecular dynamics simulation without waiting for ligands to 
spontaneously dissociate (unbind) and bind 

• Instead, in “alchemical” methods such as free energy 
perturbation (FEP), one performs a series of simulations in 
which the ligand gradually “dematerializes” from its bound 
position and “materializes” in an unbound position. This works 
because binding affinity does not depend on the binding 
pathway.    
– These methods currently represent the most accurate way to predict 

binding affinities, at least for comparing binding energies of 
chemically similar ligands, which is how they’re typically used 
• One can determine a difference in binding affinity between two similar 

ligands by “mutating” one ligand into the other in simulation. 
– These methods assume a known binding pose for each ligand 
– These methods are still very expensive computationally and thus 

cannot be used on large numbers of ligands



et al.55). The absolute approach (Figure 5A) determines the
change in free energy on moving a ligand from solution to the
bound state (ΔGbind(a)) and requires simulations that
progressively decouple the bound ligand from the binding
site and the free ligand from the solvent. The decoupled bound
ligand and the decoupled free ligand are equivalent, so the free
energy of transfer between these two states is 0. To avoid
delinquent wandering of the ligand as all interactions to the
protein are turned off, it may be necessary to constrain the
position of the decoupled ligand.56 Alternatively, relative
alchemical perturbation methods (Figure 5B) calculate the
free energy difference between the binding of a pair of ligands,
ΔΔGbind(a→b), by performing sets of simulations that transform
one ligand into the other in the binding site and also in
solution.

■ EXPECTED ACCURACY OF ALCHEMICAL
PERTURBATION METHODS

For a binding affinity value measured using a high quality
experimental method, such as isothermal titration calorimetry
(ITC), the noise is said to be within 0.3−0.5 kcal/mol,57 which
suggests the RMSD from experiment for an absolute alchemical
perturbation calculation cannot exceed this level of accuracy.
Therefore, even alchemical calculations that are run for an
extremely long time using supremely high-quality force are
expected to deviate by at least 0.3 kcal/mol RMSD from
experiment.
Absolute free energy calculations often give binding free

energies (ΔG) within 2−3 kcal/mol RMSD of experimental

determinations for uncharged ligands and up to 4 kcal/mol
RMSD for flexible or charged ligands.7,46−54 Comparatively,
relative free energy calculations, which yield ΔΔG values, are
typically more accurate13,58−67 because the initial and final
states are generally similar (i.e., the perturbation might be
performed between two molecules having a common core and
differing in only a single functional group). Similarity between
initial and final states reduces sampling errors and provides
greater accuracy.
When translating errors in free energy calculations to a

corresponding effect on the dissociation equilibrium constant
KD, one could question whether an RMSD of 2−3 kcal/mol
from the experimental binding free energy is useful, given this
level of error corresponds to quite large deviations in predicted
KD.

9,13 Indeed with errors of this magnitude, it is likely that the
rank order of a series of ligands may not be reliably predicted
using alchemical methods.57

There are a number of sources of error in perturbation
methods including, but not limited to, the quality of the force
field parameters used, the treatment of electrostatic inter-
actions, incomplete sampling, and methodological simplifica-
tions. Often, the largest sources of error associated with
alchemical free energy methods come down to inadequacies in
the force field and suboptimal sampling of the energy landscape
between states A and B. In the case of charged ligands, it has
been shown that the free energy of binding is influenced by a
variety of factors, including the size and shape of the periodic
cell, the treatment of electrostatic interactions, and the presence
of counterions.68,69 Error is also derived from statistical noise

Figure 5. Thermodynamic cycles for the calculation of free energies of ligand binding. (A) Calculation of the absolute free energy of binding of
ligand a (ΔGbind(a)). The red ellipse represents ligand a, the green structure is the protein, and the dotted white ellipse is ligand a where all
interactions are decoupled from the surrounding environment. (B) Thermodynamic cycle to calculate the relative free energy difference in binding of
ligands a and b (ΔΔGbind(a→b)).

Journal of Medicinal Chemistry Perspective

DOI: 10.1021/acs.jmedchem.7b00681
J. Med. Chem. 2018, 61, 638−649
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From Williams-Noonan et al., Journal of Medicinal Chemistry, 2018, 61:638–649

MD-based approaches 



“Ligand-based” approaches

• If one has experimentally measured affinity 
values for many ligands at a particular target, one 
can ignore the target structure entirely and simply 
make affinity predictions based on similarity of 
query ligand to previously characterized ligands 

• These approaches, which date back many 
decades, are a type of machine learning 

• They generally work well only when one has 
experimentally characterized ligands similar to 
the query ligand



Current research area:  
Machine learning approaches for virtual screening

• Both academic research groups and companies are working 
on deep learning approaches to develop more accurate 
scoring functions 

• The idea is to fit general functional forms (as described by 
large neural networks), rather than assuming specific 
functional forms based on approximations to physics 

• A variant of this approach is to do reasonably accurate, time 
consuming calculations for a subset of the compounds in the 
library, and then use the results to predict binding affinities of 
other compounds with faster ligand-based methods 



Experimental structure 
Computational prediction (docking)

Beta agonist dobutamine bound to 
β1-adrenergic receptor

Another machine learning approach:  
experimental information on unrelated ligands can 

substantially improve docking predictions



Experimental structure 
Computational prediction (ComBind)

Another machine learning approach:  
experimental information on unrelated ligands can 

substantially improve docking predictions

Beta agonist dobutamine bound to 
β1-adrenergic receptor

Paggi, …, Dror, PNAS 2021

\

Prediction informed by the fact that the 
compounds below bind this target (in 
unknown poses)



Compounds that bind to the same target often form 
similar interactions with the binding pocket 

• We thus predict their poses simultaneously 
– Without requiring any similarity between ligands 
– Without requiring shared interactions 

• We learn the likelihood of a given set of ligand 
poses (one pose per ligand)
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Average performance across 102 targets in DUD-E benchmark set

A similar approach (ComBindVS) 
improves virtual screening

Note: All ligands screened are very different from known binders.

Docking

Paggi, …, Dror, PNAS 2021



Current research area:  
Generative models

• Instead of learning a scoring function, one can learn to 
directly generate ligand binding poses or even ligands 
themselves 

• Ligand binding poses: 
– Given a 3D structure of a protein and the 2D structure of a 

ligand, generate ligand coordinates (e.g., using a diffusion 
model) 

– Given only the sequence of a protein the 2D structure of a 
ligand, generate coordinates for both. This is essentially a 
generalization of RoseTTAFold or AlphaFold 2 to include ligands 

• Ligands 
– Given a 3D structure of a protein binding pocket, generate 

ligands that bind tightly to that pocket


