Project topics

CS/BioE/CME/Biophys/BMI 279 Nov. 9 and 14, 2023 Ron Dror

Project Guidelines

- You are most welcome to pick something that is not mentioned in this presentation
- The key requirement for a project topic is that it should involve 3D structures of biomolecules and/or spatial organization of molecules within a cell
 - Of course, it should also involve (or at least relate to) computation
 - Machine learning projects are great, as long as they explicitly involve 3D structures of biomolecules or spatial organization of molecules within a cell
 - Image analysis is great, as long as the analysis you do provides information 3D structures of biomolecules and/or spatial organization of molecules within a cell

Project Guidelines

- Projects can be methods-focused and/or applicationfocused
 - You can code/modify software, or apply existing software to a biological problem
 - You could also carefully compare the results/accuracy of several algorithms or software packages
- You can work individually, or in groups of 2 or 3
 - In any case, the amount of work *per person* should be similar to assignments 2 or 3.
- See Project Instructions document on website for details on project writeup and other information
 - Group projects, overlaps with projects for other classes, etc.
 - Expected amount of work and deliverables

Protein structure prediction

- Potential topics include:
 - Structure prediction methodology
 - ProteinNet provides some datasets for protein structure prediction benchmarking: <u>https://www.tensorflow.org/</u> <u>datasets/catalog/protein_net</u>
 - Structures of proteins (or protein complexes) of interest
 - Effects of protein modification (e.g., mutation)

Protein structure prediction

- Sample codes and servers:
 - Rosetta/PyRosetta (or Robetta webserver)
 - Phyre2 (web server)
 - Modeller (web server called ModWeb, or download code)
 - SWISS-MODEL (web server)

- Related: RNA structure prediction
 - RNAComposer web server: <u>http://rnacomposer.cs.put.poznan.pl/</u>

Protein structure prediction

- Recent deep-learning methods for protein structure prediction
 - ColabFold package provides a fast Python-based interface for several of these, including AlphaFold 2 and ESMFold (which is based on large language models):
 - <u>https://github.com/sokrypton/ColabFold</u>
 - <u>https://www.nature.com/articles/s41592-022-01488-1</u>
 - Robetta webserver allows use of RoseTTAFold, but multiple sequence alignments must be provided (computed separately)
 - The COSMIC2 server allows one to run AlphaFold 2, ESMFold, and other software for protein structure prediction and cryo-EM data analysis
 - <u>https://cosmic2.sdsc.edu/</u>

Molecular dynamics simulation

- Focus either on simulations of particular molecules, or on methods (e.g., molecular dynamics vs. Monte Carlo)
- Existing software
 - GROMACS, Desmond, NAMD, AMBER (PMEMD module): designed for performance.
 - GROMACS, Desmond, and NAMD are free (for academic use); AMBER is not
 - Desmond can be run through the Schrodinger Maestro graphical user interface
 - Tinker—slow, but designed to be easy to work with the code (also free)
 - Most of these are designed for Linux, but Windows and Mac executables are available for Tinker
- You can write your own code
 - Don't resubmit code you wrote for CS 274 (BIOE/BMI/GENE 214), but you can build on it. For example, increase speed (fast electrostatics methods), improve integrators, add restraints/constraints or other features. Or you could use Tinker for this.
- Note that most MD simulations take a long time to run. For short simulations, you could try the WebGRO server (not yet tested; feedback welcome!):
 - <u>https://simlab.uams.edu/index.php</u>

Protein Design

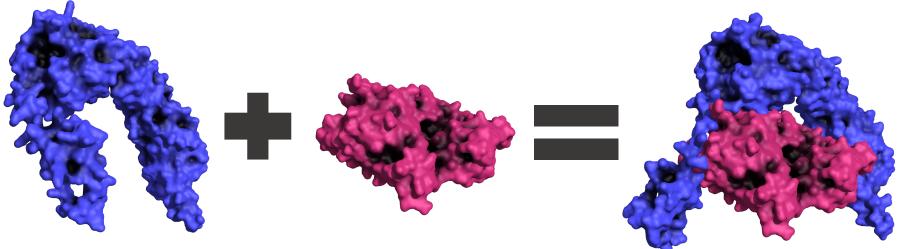
- Rosetta software is free for academic use
- Rosetta Design server: <u>http://rosettadesign.med.unc.edu/</u>
- ColabDesign:
 - <u>https://github.com/sokrypton/ColabDesign</u>
 - Supports several protein design tools (including RFDiffusion) in an interface similar to ColabFold

Image analysis

- Image classification, segmentation, or denoising; disease diagnosis; cell counting; measurement of protein concentration/ localization, and detection of colocalized proteins of different types; or other useful tasks
 - Project should involve cellular or molecular images (as opposed to traditional medical MRI or x-ray images, for example)
 - The analysis you do should provide information on 3D structures of biomolecules and/or spatial organization of molecules within a cell
- Useful software:
 - Matlab (general-purpose; available on VPTL machines)
 - ImageJ (free, widely used for biological image processing)
 - CellProfiler (free, includes machine learning applications)
- Or write your own software
 - For machine learning projects, consider using libraries such as PyTorch or TensorFlow

Image analysis

- Sample image sets:
 - <u>https://data.broadinstitute.org/bbbc/</u>
 - <u>https://www.kaggle.com/paultimothymooney/blood-cells</u>
 - <u>https://idr.openmicroscopy.org/cell/</u>
 - Specifically, Cell-IDR, not Tissue-IDR
 - <u>https://www.ebi.ac.uk/empiar/EMPIAR-10592/</u>
 - See <u>https://elifesciences.org/articles/65894</u>
 - <u>https://thecellvision.org/cyclops/</u>
 - See <u>https://academic.oup.com/g3journal/article/</u> <u>5/6/1223/6025272</u>
 - <u>https://ssbd.riken.jp/database/</u>
 - Please let me know of other good ones you find!


Reaction-diffusion simulation

- Build a model of a cellular process, or consider methodological issues
- Write your own code, or use existing software packages:
 - MCell, Smoldyn, Simmune
 - For MCell, consider using CellOrganizer or CellBlender to make models or renderings

Ligand docking and virtual screening

- Established, free codes and web servers:
 - Autodock Vina
 - SwissDock
- GLIDE: Powerful commercial software, for which Stanford now has a university-wide license
 - See <u>https://guides.library.stanford.edu/c.php?</u>
 <u>g=1175377&p=9895759</u>
 - You can also access other structural modeling software from the same company (Schrodinger); see the link above
- ZINC ligand library: <u>http://zinc.docking.org/</u>
- ChEMBL (a large dataset of experimentally measured ligand-binding properties): <u>https://www.ebi.ac.uk/</u> <u>chembl/</u>

Protein-protein docking

- Starting with existing structures:
 - ZDock, Haddock (use physics-based scoring functions)
- Starting without existing structures:
 - RoseTTAFold or AlphaFold 2
- Related: docking peptides to a target protein
 - FlexPepDock server
 - You could also try RoseTTAFold or AlphaFold 2

Crystallography

- Structure factors (i.e., primary crystallographic data) are often available in PDB.
 - See <u>https://pdb101.rcsb.org/learn/guide-to-understanding-pdb-data/structure-factors-and-electron-density</u>
- Phenix software (<u>https://phenix-online.org/</u>)

Single-particle electron microscopy

- Software packages:
 - CryoSPARC (incorporates recently developed machine learning methods, and has a graphical user interface)
 - XMIPP (has a graphical user interface)
 - Relion (based on Bayesian methods)
 - Installation of these packages can be challenging
- Alternative: implement something yourself
 - Work in two dimensions for simplicity
 - Or tackle early stages in single-particle EM pipeline, such as particle picking

Some other machine learning projects

- Protein secondary structure prediction from sequence
 - Some data sets: <u>https://www.compbio.dundee.ac.uk/</u> jpred/about_RETR_JNetv231_details.shtml
- Machine learning on cellular/molecular images (see earlier slide)
- ATOM3D
 - A collection of ML tasks and datasets involving 3D molecular structure: <u>https://www.atom3d.ai/</u>
- Learning force fields
 - ANI-1ccx and ANI-1x data sets: <u>https://www.nature.com/articles/s41597-020-0473-z</u>

Other topics

- CellPack (<u>https://www.autopack.org/</u>): packing proteins into a cell
- Coarse-grained simulation (e.g., assembly of a viral capsid; consider HOOMD-blue software)
- EVCouplings (<u>https://v2.evcouplings.org/</u>): prediction of contacts in protein structures based on covariation across sequences
 - Also see "Distance-based protein folding powered by deep learning" (<u>https://www.pnas.org/content/</u><u>116/34/16856.short</u>)