
Assignment 3 – Cellular Structure and Dynamics

CS/BIOE/CME/BIOPHYS/BIOMEDIN 279

Due: Nov 16, 2023 at 1:00 PM

In the previous assignments, we’ve talked about the structure of biomolecules at an atomic resolu-
tion. The goal of this assignment is to discuss structure and organization at the cellular level, and
to gain an appreciation for the techniques we can use to learn about these structures.

Acknowledgements: Many thanks to Prof. Julie Theriot and Prof. Zach Pincus for access to the
data sets used in this assignment. For more on their methods and software, check out:
Pincus Z & Theriot JA. Comparison of quantitative methods for cell-shape analysis. J Microscopy
227 pp. 140–156 (2007).

1 Preliminaries

• Computing options: We have found that software installation for Assignment 3 can be
challenging for students. As a result, we strongly recommend using the Stanford LTS
computers, which have all the necessary software pre-installed. Regardless of which option
you choose, please see the Assignment 3 Setup Document for platform-specific setup
instructions. Our suggestions for computing options in order of preference are:

1. Using in-person LTS machines: We strongly recommend using these machines for this
assignment if you live on-campus or can physically access on-campus buildings. Here are
links to the full list of LTS locations and the library hours for using the in-person LTS
machines. The LTS machines in residences are available 24/7, as are the machines in
the Lathrop study room. Once logged into the LTS machine, download the assignment
files from the course website. Make sure to save your files to Google Drive or an
external drive. Files downloaded onto the LTS machines are deleted upon
logging out.

2. Self-installed software: See the Assignment 3 Setup Document for details on software in-
stallation and setup. Note: Installing packages directly on Windows can be challenging,
and we may be unable to provide support with this process on Windows. Mac, WSL on
Windows, and Linux users have a better chance of success with self-installation, but it
has proven difficult for many students in the past.

3. Remote LTS access: The number of LTS machines available for remote access is very
limited. As a result, there could be a shortage if too many students use the LTS remote
machines shortly before the due date, so please plan to complete the assignment early.

1

https://docs.google.com/document/d/1mZe63irxp_BGc5FeFspRqiF4kxS2XsctjeswdOfZ9BM/edit?usp=sharing
https://thehub.stanford.edu/services/find-computers
https://library-hours.stanford.edu/
https://docs.google.com/document/d/1mZe63irxp_BGc5FeFspRqiF4kxS2XsctjeswdOfZ9BM/edit?usp=sharing

See the instructions in working on LTS computers for setup details. Once logged into
the remote LTS machine, download the assignment files from the course website. Make
sure to save your files to Google Drive or an external drive. Files downloaded
onto the LTS machines are deleted upon logging out.

• LTS users: Please make sure to use the command “python3.9” instead of “python” for every
block of code where “python” is currently written.

• We’ll ask you to submit screenshots of a few functions throughout the assignment. Please
only submit the functions we request. We do not want any other code submitted.

2 Cellular Structure

What do we mean when we refer to cellular structure and organization? Unlike the atoms within
a biomolecule, the molecules within a cell do not typically have 3D coordinates that are conserved
within all individual cells of a given type. We know that the overall shape of a given cell (and
the organization of bio-machinery within that cell) is strongly tied to its functionality and chemical
environment.

Humans can observe the variations in cellular structure that occur across cell types, between mu-
tants, and after changes in chemical environment. These observations make for a strong qualitative
analysis, but is it possible to develop a quantitative method for analyzing the structure of cells that
captures this human intuition? Modern image processing techniques and basic statistical procedures
allow us to extract meaningful features of different cell types.

2.1 Microscopy Image Analysis

We’ll begin by displaying some of the microscopy images we will be analyzing. We’ll be working with
three sets of images in this assignment. The first image corresponds to a mitochondrial membrane
structure for rod and cone mitochondria. The second set of images is of caulobacter, a bacterium
which is often used as a model organism to study the cell cycle and differentiation. The third set
of images are of keratocytes, which are mesenchymal-derived cells responsible for maintaining the
collagen scaffold and extracellular matrix of the corneal stroma.

Many of these are grayscale images, where each pixel value represents the observed intensity at the
corresponding (x, y) point. There are many ways to look at images, but we provide you with a
simple script in your imgs folder to display a given file.

To see the images for this assignment, cd into the assignment starter code folder, then cd into the
imgs folder in terminal. Then call the provided show.py file to look at the images in mitochondria,
caulobacter, and keratocytes folders.

Usage:
python show.py <path to image file>
Note: You may have to replace python with python3.9 in order to point to the correct python
version.

2

http://web.stanford.edu/class/cs279/handouts/Working_Remotely_on_LTS_Machines.pdf
http://www.cellimagelibrary.org/images/CCDB_54##download_options_button
http://www.cellimagelibrary.org/images/CCDB_54##download_options_button
https://en.wikipedia.org/wiki/Caulobacter_crescentus
https://en.wikipedia.org/wiki/Corneal_keratocyte
https://en.wikipedia.org/wiki/Stroma_of_cornea##:~:text=Anatomical%20terminology,anteriorly%2C%20and%20Descemet's%20membrane%20posteriorly

Now, let’s work on doing some image analysis. We’ll start by trying to denoise the images using
some of the techniques discussed in class (Image Analysis). In the next few problems and exercises,
you will construct various filters. To run these filters on images, use the filter.py script from your
imgs folder.

Usage:
python filter.py <path to image file> <filter name>

For Exercises 1-4 and Questions 1-3, use the mitochondrial image (mitochondria.png) in the
mitochondria folder. The commands in filter.py will output the original image and the fil-
tered image, which may appear on top of each other. Both will have a color map on the right, which
maps the colors in the image to a range of values.

Exercise 1: Implement the mean low-pass filter in filter.py. The problem documentation has
more information on what to implement.

Question 1: Play around with the window size: try a 3 × 3 and 6 × 6 array. Test your mean
low-pass filter on the mitochondrial image.

(a) Insert your code for the mean filter (a screenshot works well).

(b) Include a screenshot of the resulting 3× 3 and 6× 6 mean-filtered images (please include the
colorbar in your screenshot).

(c) In 1-2 sentences, why is it good practice to make the entries in the mean filter sum to 1?

Exercise 2: On the mitochondrial image, try out median and gaussian filters with different
sizes and standard deviations respectively. Try to find a size and standard deviation respectively
that create an improved image (as determined by visual inspection). You do not need to submit
anything for this exercise, but understanding filter parameters will help for future questions.

Convolutional filters designed to remove noise are generally referred to as “low-pass” filters, because
they smooth out the original signal, leaving the low frequencies while reducing the high frequencies.
What if, instead of denoising the images, we wanted to extract an outline of the cell’s structures?
In this case, we want a “high-pass” filter, which will emphasize abrupt changes in intensity rather
than gradual changes.

Exercise 3: Implement the hp and gaussianHP filters.
The hp filter will convolve the original image with a matrix such as:−c −c −c

−c +8c −c
−c −c −c

The gaussianHP filter exploits the fact that the original image minus a Gaussian low-pass filter
gives a reasonable high-pass filter.

3

https://web.stanford.edu/class/cs279/lectures/lecture8.pdf

Question 2:

(a) Include your code for the hp filter.

(b) Try different values of c. What happens to the image as you change the value of c? Include a
screenshot of the output of your hp filter, and include the final value of c that you choose.

(c) Include your code for the gaussianHP filter.

(d) Include a screenshot of the output of your gaussianHP filter.

(e) Note that in the simple hp filter, the entries in the matrix sum to 0. Why is this a good idea?

Now, take a look at the Caulobacter images in imgs/caulobacter. These images were collected
using phase-contrast microscopy, which gives us very good contrast between “Cell” and “Not Cell”,
but poor contrast within the cell. This property allows us to extract the outlines of the cells with
a simple threshold filter.

Exercise 4: Implement the threshold filter. You should select a threshold value where the
contrast is clearest and then set all values above this threshold to 0 and all below this threshold to
1. This will invert the image so that the cell outline appears with a pixel value 0 (a darker color)
and the background appears with a pixel value 1 (a lighter color). Note that the color representation
may depend on your image color map.

Question 3: Test your implementation of the threshold filter on the mitochondrial image.

(a) Include your code for the threshold filter.

(b) Include a representative screenshot of the output of your threshold filter.

(c) In 1-2 sentences, explain how you derived your threshold value and note what your final thresh-
old value was.

2.2 Principal Component Analysis of Caulobacter Cells

In the next section, we’ll use binary masked images, like the ones we generated in the last exercise
to analyze cell shapes with caulobacter images. In the masks folder, there are sequences of binary
caulobacter images that have already been processed so that any part of the image that is a cell is
completely white (= 1) and all other parts of the image are completely black (= 0).

Let’s start by making some qualitative observations.

Question 4: Describe the shapes of the cells that you see. In particular, what attributes of an
individual caulobacter cell’s shape would allow you to distinguish it from the others?

Now that we have some sense for what the cells in our data set look like, we’ll use the software
Celltool to help us make these qualitative observations quantitative. Celltool has tools to represent
cell shapes as outlines. The first thing we need to do is extract this outline or “contour".

4

Question 5:
Go in to the masks folder.
cd masks

Extract the contours from caulobacter as follows. If copy/pasting this command, make
sure that the underscore is there and that the spacing is right so that the command line arguments
are parsed correctly!
celltool extract_contours \
--resample-points=100 --smoothing-factor=0.001 \
--destination=cauloContours caulobacter/*.tif

Then, run the following command to plot the contours into an svg file.
celltool plot_contours \
--output-file="cauloContours.svg" cauloContours/*.contour

Include a screenshot of cauloContours.svg in your writeup. (It’s easiest to view .svg files
by opening them from your folder using Chrome or another web browser)

You should now have a file in the folder called cauloContours.svg. Take a look at this file. You
should see the outlines of a number of cells laid across the image. It will also be helpful to look
at one of the .contour files in the cauloContours folder. These files can be viewed in your native
text editor software (i.e TextEdit for Mac).

In particular, note that these outlines are saved as an array of (x,y) points. In order to be able to
compare and contrast these vectors of points, we must align the vectors such that the ith point in
each vector corresponds to an analogous point in each cell.

Exercise 5:
Align the extracted contours using the following command.
celltool align_contours \
--allow-reflection \
--destination=cauloAligned cauloContours/*.contour

Then plot these aligned contours.
celltool plot_contours --color-by=points \
--output-file="cauloAligned.svg" cauloAligned/*.contour

Note: You do not need to submit cauloAligned.svg.

Open cauloAligned.svg. The cells should now be aligned, where the indices of points along one
cell’s outline generally correspond to analogous points on other cells’ outlines. Note that a cell’s
contour is colored by the point ordering of it vertices. Now that we have a consistent representation
of the cells, we can begin analyzing the cells quantitatively.

Before talking about our specific data, we should first discuss the main technique that Celltool
will use to build a model for the cells: Principal Component Analysis (PCA). Recall from the
Image Analysis lecture (particularly slides 35-38) that PCA is a statistical procedure that identifies
a low-dimensional space that can be used to provide a reasonably accurate description of a high-
dimensional data set. Let X be our data set of n-dimensional points. Intuitively, we want to find
an n-dimensional vector, c, that maximizes the spread between all the points in X when they are

5

https://web.stanford.edu/class/cs279/lectures/lecture8.pdf

projected onto a line of slope c.1

Formally, the first principal component is defined for a data set X centered about the origin as
follows.

c1 = argmax
∥c∥=1

∑
x∈X

(x · c)2

Recall that a dot product is greatest in absolute value when x and c point along the same axis.
Thus, because we assume that X has mean 0 in every coordinate, maximizing the sum of squared
dot products results in choosing a direction, c, which maximizes the overall variance after projection.

We’ll see that maximizing the variance preserved from the data set allows us to reduce our repre-
sentation of the data while minimizing the error that is introduced. To get a sense of what this
definition means in practice, consider the following example.

Consider the spread of points in Figure 1. You can view the data more carefully on your own screen
by running: python pca/plotData.py. Typically, we would describe the coordinates of the points
as (x, y) pairs with the bottom left corner at (0,0) moving upward towards the upper right corner
at (6, 5).

Figure 1: 2D data points
1This means in theory, all we care about is the slope of c. In practice, the predominant method for calculating

the principal components require that you’ve centered your data X around the origin by subtracting the mean value
from each of the data points.

6

Question 6: Suppose, to simplify our representation, we wanted to only store one value for
each coordinate while maintaining our ability to distinguish between points as much as possible.

(a) Clearly, one solution would be to save just the x-coordinate or just the y-coordinate. These
solutions project the data onto the lines y = 0 and x = 0 of slope 0 and ∞, respectively. cd
into your pca folder. Use the project.py script in the pca folder to see what the data looks
like under these projections. Note: This command will produces two plots, which may appear
stacked on top of each other.
cd <assignment folder path>/pca
python project.py 0
python project.py inf
Look at the output of the command in your terminal window. What is the empirical variance
after projection in each case?

(b) The choice to project onto x = 0 and y = 0 was arbitrary. By picking the projection line more
carefully, we should be able to preserve more of the variance in the data points. Play around
with different slope values. What slope, rounded to the nearest tenth, maximizes the variance
preserved? What is the empirical variance of the data under this projection?

(c) The slope you found in the last part is precisely the first principal component — the line that
maximizes the spread of points after projection. The second principal component is defined
similarly after removing the variation in data points according to the first principal component.
In particular, the next principal component must be orthogonal (perpendicular) to the first,
regardless of the number of dimensions. (You should convince yourself of this fact.) What is
the slope and variance preserved of the second principal component?
Hint: What’s the relationship between perpendicular lines and their slopes?

(d) Submit a plot of the data projected onto the first principal component and onto the second
principal component.

Note that because the data we worked with in the previous question was only 2-dimensional, there
are only 2 principal components. In general, if we are dealing with n-dimensional vectors, there
will be n principal components. In the case of our cells, where we use 200 values (100 x,y pairs) to
represent each cell, there will be 200 principal components, which are each 200-dimensional vectors,
which capture all of the variance in the set of cell images. That said, the hope is that the majority
of the variance is captured by the first few principal components. If this is the case, then we will
have a succinct way of representing and discriminating between individual cells.

Now, we will jump back to using Celltool to investigate the data set of cells.

Exercise 6: Go back to the masks folder and run the following commands, which should extract
the first two principal components of cells’ shape from the contours you generated before.
celltool shape_model --variance-explained=0.95 \
--output-prefix="cauloModel" cauloAligned/*.contour
Then plot the model.
celltool plot_model "cauloModel.contour"

7

Question 7: Include a screenshot of cauloModel.svg in your writeup. Qualitatively, what do
the first two principal components of the Caulobacter data look like? What differences are they
capturing? How well do these components correspond to the qualitative descriptions you originally
described (question 4)?

We can think about these principal components in a few ways. Firstly, this analysis shows that
> 95% of the variance in Caulobacter shape corresponds to only two axes in our original 200-
dimensional space. This means, that to a good first approximation, we could represent each cell as
2 numbers, rather than 200 because we only lose 5% of the variance in the population. Additionally,
the correspondence between the principal components and our qualitative observations gives a
rigorous statistical justification for using these observations as discriminative features. Finally,
by using the principal components, we can easily generate new images of cells, which we’ve never
seen before, but which are statisically similar to cells that we have observed.

2.3 Characterization of Keratocytes

Now we’d like to use Celltool to characterize cells based on their shape. For this section, let’s use
the following hypothetical situation as context. We’ve collected images of keratocytes grown in two
different media: one in normal media and the other in media diluted to 25% the concentration.
Unfortunately, we were not careful in the lab and we mixed up which images correspond to which
condition. We also happened to take images of keratocytes grown in another chemical condition
that causes a similar osmotic stress on the cells as growing in 25% media. Thus, these cells should
look more similar to one another than to the normal cells. We’d like a quantitative method to
identify which images correspond to which condition.

8

Exercise 7: Inside the masks/keratocytes folder the prefix of each image corresponds to the
growing conditions, unknowns A and B and known chemical environment X. Build a shape model
from your masks folder for the whole data set that will allow you to observe differences in the
cell types. Navigate to the masks folder.

cd <assignment folder path>/masks/

Then, run the following commands to generate the model.

celltool extract_contours --resample-points=100 \
--smoothing-factor=0.001 \
--destination=kContours keratocytes/*/*.tif

celltool align_contours --allow-reflection \
--destination=kAligned kContours/*.contour

celltool shape_model --variance-explained=0.90 \
--output-prefix="kModel" kAligned/*.contour
celltool plot_model "kModel.contour"

Take a look at kModel.svg.
Note: You can ignore the Warning: Contour alignment did not converge after 10
iterations warning after the align_contours command if it appears.

Now that we have a model that characterizes the top principal components, we can plot the images
as points on the axes of these components. (We’ll plot along the first two principal components for
ease of visualization.)

Exercise 8: Run the following commands to measure the average area of each cell type and
degree of each principal component present for each cell type.
celltool measure_contours --output-file="A.csv" \
--area --shape-modes kModel.contour 1 2 - kAligned/A*.contour

celltool measure_contours --output-file="B.csv" --area \
--shape-modes kModel.contour 1 2 - kAligned/B*.contour

celltool measure_contours --output-file="X.csv" --area \
--shape-modes kModel.contour 1 2 - kAligned/X*.contour
Then plot the distribution of cell types along the axes of the principal components as follows.
celltool plot_distribution --x-column=3 --y-column=4 \
--output-file="dist.svg" A.csv B.csv X.csv kAligned/*.contour
Finally, plot the distribution of areas of the cells as follows.
celltool plot_distribution --x-column=Area \
--output-file="areas.svg" A.csv B.csv X.csv

9

Question 8: Take a look at your outputs from Exercise 8. We’ll use these files to answer Question
9. Note: If you are using an LTS machine, you may have to open areas.svg in Chrome instead
of Inkscape to display the legend colors correctly.

• Include a screenshot of dist.svg in your writeup.

• Include a screenshot of areas.svg in your writeup.

Question 9: Which set of cells was grown in normal media and which was grown in dilute
media? How did you come to this conclusion? You should refer to the plots generated in the
previous exercise.

Now that we can effectively analyze and model cellular shape, we can start to talk about the
intra-cellular organization and dynamics.

3 Diffusion Simulations

Once we have a model for the structure of a given type of cell, we frequently want to model the
dynamics within the cell. Next, we will look at how biological molecules diffuse throughout cells.

Diffusion is the process by which particles spread out and mix together with other particles. Funda-
mentally, diffusion is governed by the random motion of individual particles. However, by combining
many particles’ random motions, we can derive deterministic laws that govern the aggregate move-
ment of a substance through solution.

Let’s start by thinking about motion in one dimension.

Question 10: Assume there is a single particle on a number line, starting at position 0, and at
each time step it moves left or right by 1 unit with equal probability.

(a) Give the probability distribution over positions at t = 4 and t = 5. In other words, list the
probability of the particle being at each possible position, at t = 4 and t = 5 respectively. A
two-column table (one column of position, one column of probability) has historically worked
well.
Extra Credit: Give a general expression for the probability of the particle being at position
x = x′ at time t = t′.

(b) What is the expected position x at time t = t′? What is the expected squared displacement
after t′ time steps?

Hint: The Diffusion and Cellular-Level Simulation slides could be helpful here.

Now, let’s consider what happens when we add more particles.

10

Question 11: Under the same model as the previous question, assume we have 1000 particles,
all starting at position 0.

(a) At the first time step, what is the expected number of particles that pass from x = 0 to x = 1?

(b) Let n(x, t) be the number of particles at position x at time t. After 1 time step, what is the
expected number of particles that pass from x = x0 to x = x0+1? What is the expected number
of particles that pass from x = x0 + 1 to x = x0? And combining these two numbers, what is
the net movement of particles from x = x0 to x = x0 + 1?
Your answers should be expressed in terms of n(x, t).

This result underpins “Fick’s Law,” which states that the flux (the net movement of particles across
a unit area per unit time) is proportional to the concentration gradient.

J = −D
∂C

∂x

where J is the flux, C is the concentration, and D is a diffusion coefficient and is given in units of
(distance)2 per time.

While it is important to understand that particles move from high concentrations to low concentra-
tions in space — and that this fact can be derived from a simple random motion model — what we’d
really like is a way to express the change in concentrations over time. If we assume that particles
are neither lost nor created, then the change in concentration over time must equal the change in
flux over distance.

∂C

∂t
= −∂J

∂x

Using this fact and substituting our first expression for J , we can derive the diffusion equation, which
states that the change in concentration over time is proportional to the change in concentration
gradient over space.

∂C

∂t
= D

∂2C

∂x2

Thus, at a given point in space, the change in local concentration over time is proportional to the
degree to which the concentration gradient changes spatially.

Question 12: Assume that concentration changes linearly across a system, such that the concen-
tration gradient is constant: ∂C

∂x = k for some constant k. How does the concentration throughout
the system change over time? Explain this macroscopic phenomenon in terms of the motions of
individual particles of the system.

Now, we will put our theoretical understanding to the test and implement two types of simulations
of particles diffusing through a cell. We will make the simplifying assumption that cells are rectan-
gles and that if a particle moves beyond a boundary, say over the rightmost boundary, it will appear
on the opposite, leftmost, boundary. We will have you complete the code necessary to update the
state of the cell from one time step to the next.

11

In the StochasticDiffuser, you will fill in the number of particles at each block (cell) for the
next state (newBlocks) by iterating through the current cell state and randomly assigning a new
direction for each particle to move.

In the LaplacianDiffuser, you will update the “concentration” of particles deterministically based
on the discrete second derivative of the concentrations (also called the Laplacian).

Before you get started, carefully read over the code in diffuser.py. You should understand what
self.blocks represents and where the initial simulation parameters are set, as well as how you
would use the functions self.nextX() and self.nextY().

Exercise 9: Implement update() in StochasticDiffuser in diffuser.py.

Exercise 10: Implement update() in LaplacianDiffuser in diffuser.py.

Hint: To derive the Laplacian, we will approximate the appropriate derivatives using finite
differences (i.e. dF

dx ≈ f(x+h)−f(x)
h). Specifically, you will approximate the second derivative of

concentration with respect to x (d
2C
dx2) or y (d

2C
dy2

). This means that you will also approximate the
first derivatives, dC

dx and dC
dy . Assume that the values stored in self.blocks represent concentrations.

These approximations can be numerically unstable if both the first and second derivatives
are calculated using the same interval, i.e. df

dx = f(x+h)−f(x)
h and d2f

dx2 = dfx(x+h)−dfx(x)
h are

using the same interval between x and x + h. To avoid instability, you will need to balance the
derivatives so that they are calculated using different intervals, i.e. df

dx = f(x+h)−f(x)
h and d2f

dx2 =
dfx(x)−dfx(x−h)

h .

Note: If you need to stop the simulations below, you may do so in terminal via control-C.

12

Question 13: Run the StochasticDiffuser (python diffuser.py stoc) under a variety of
initial conditions. You can locate pre-populated conditions at the end of diffuser.py, and un-
comment the condition to run.

(a) Include your code for update in StochasticDiffuser.
You may remove the comments inside the function if it takes up too much space.

(b) Start with the “Single Particle” simulation. How would you characterize the motion of the
particle? Hint: The scale bar is indicative of how many particles are in a block.

(c) Next, run the “Point Mass” simulation. What does the state of the diffuser look like after 100
iterations? After 500?
Hint: You can edit the plotting script to make it only plot once after N iterations. You may
include screenshots if it helps your explanation, but this is not necessary.

(d) Can you predict where a specific particle will be after many iterations? Can you predict the
distribution of particles after many iterations?

(e) Convergence occurs when the diffuser reaches a state of equilibrium. Play around with the
diffusion coefficient and starting number of particles. Do either of these parameters affect the
rate of convergence? If yes, identify which parameter(s) affect the rate of convergence and
describe how the rate of convergence changes.

Question 14: Run the LaplacianDiffuser (python diffuser.py lap) with some of the dif-
fusion conditions in diffuser.py.

(a) Include your code for update in LaplacianDiffuser.
You may remove the comments inside the function if it takes up too much space.

(b) Play around with the diffusion coefficient and the starting concentration. Do either of these
parameters affect the rate of convergence? If yes, identify which parameter(s) affect the rate
of convergence and describe how the rate of convergence changes.

(c) Using the “Point Mass” simulation and starting with an initial concentration of 1, 250 and a
diffusion coefficient of 0.24, how many iterations does it take for every block (voxel) to have
roughly an equal concentration of particles (i.e. to converge)? Note that our criterion for
convergence is ∆concentration < (ϵ * initial concentration) for all voxels, where ϵ = 0.001
(about 1/1, 250). Provide a brief description of how you determined when the simulation
converged.
Hint: You can do an approximate calculation using the scale bar to estimate the number of
iterations needed for convergence.
Note: We will accept a wide-range of answers, given a sufficient justification.

Question 15: As time goes to +∞, what is the probability that the Laplacian model has a block
of concentration 0? What about in the stochastic model — is the probability positive or equal to 0?
(Hint: Do NOT try to explicitly compute this probability. We are asking you to use your intuition
based on how these two models work.)

13

Question 16: Based on the answer to the previous question, and any other observations you’ve
made, when do you think it would be appropriate to use the Laplacian Model versus the stochastic
model? What are the benefits and drawbacks to each?

4 Feedback

Again, we’d love some feedback on the assignment! You will receive full credit for this portion for
providing any response. Please fill out the assignment feedback form and provide the code word
below. We encourage constructive criticism.

Question 17: What is the feedback form code word?

5 Challenge Question

Instructions for the challenge question can be found in this document. The challenge problem
dataset is uploaded to the website under the assignments section.

Include the following in your submission:

• A binary segmented image of each of the four input files, e.g. nuclei white, background black.

• Your histograms of areas and intensities. Your scatter plot of area versus intensity.

• A complete explanation of your analysis pipeline. Illustrate each step of your pipeline with
example images. Why did you design it this way?

• An explanation of other approaches you tried. Why did they perform more poorly? Illustrate
with example images.

• A brief discussion interpreting any trends you observe in the nucleus area and intensity data.
Are there aspects of the pipeline could still be improved, and how would this affect these
results?

6 Submission Instructions

Submit your assignment responses to Gradescope under Assignment 3.

As before, type up your solutions in the text editor of your choice. Please include the screenshots
of your code for the corresponding questions in the write-up only for the functions we ask. Do not
submit any code that has not been explicitly asked for.

Please tag all pages under the corresponding items; without this, we may not be able to give you
all the points for a question.

14

https://forms.gle/JUW4auD4UTg5p7NbA
https://docs.google.com/document/d/1Iq2BfPGhgG4ODUqqn-pDCz502PZDKZio8j8ueMi1_lI/edit?usp=sharing

	Preliminaries
	Cellular Structure
	Microscopy Image Analysis
	Principal Component Analysis of Caulobacter Cells
	Characterization of Keratocytes

	Diffusion Simulations
	Feedback
	Challenge Question
	Submission Instructions

