
STANFORD UNIVERSITY
Department of Mechanical Engineering

CS277 - Dynamics Summary
Dr. Adam Leeper, Spring 2014

This sheet summarizes some useful formulas for dynamics. For simplicity of notation, all velocities, accelerations,
angular velocities, and angular accelerations are assumed to be with respect to (measured in) the world Newtonian
frame, N . Note “with respect to” is not the same as “expressed in”. The first has to do with actual physical
motion and the reference frame of the observer; the second has to do with the choice of variables and unit vectors.

Our notation assumes an arbitrary frame F has an origin Fo and orthonormal unit vectors f̂x, f̂y, f̂z fixed in it.

1 Force Models

1.1 Translational Spring-Damper

For points Q and P connected by a translational spring-damper, the force on Q from P is given by:

Spring: ~F
Q/P

spring = −k(L− Ln) ∗ ûQ/P , where L =
∣∣~rQ/P

∣∣ and Ln is the spring’s natural length.

Damper: ~F
Q/P

damper = −bL̇ ∗ ûQ/P , where L̇ =~vQ/P · ûQ/P .

Note: The the unit-vector pointing to Q from P is ûQ/P = 1
L(~rQ/P ).

Hint: Instead of L, use L+ ε to avoid divide-by-zero issues.

1.2 Air

Translational air resistance on body B is often modeled as ~F
B

air = −bair,1 ∗ air~vBcm .

Rotational air resistance on body B is often modeled as ~T
B

air = −bair,2 ∗ air~ωωωωωωωωωωωωωB.

1.3 Gravity

The effect of gravity is often modeled as a single force acting at the center-of-mass of a body (or particle):

~F
B

g = mg ∗ (unit-vector pointing “down”).

2 Kinematics

2.1 Translation

Represent the vector from No to particle/body center Bcm using measures along basis vectors n̂x, n̂y, n̂z:

~rBcm/No = x n̂x + y n̂y + z n̂z Position vector to Bcm from No.

~vBcm = ẋ n̂x + ẏ n̂y + ż n̂z Velocity of Bcm (expressed in n̂xyz).

~aBcm = ẍ n̂x + ÿ n̂y + z̈ n̂z Acceleration of Bcm (expressed in n̂xyz).

For the rigid body case, the position and velocity of the attachment point Q on the edge of the sphere is:

~rQ/No =~rBcm/No +~rQ/Bcm = x n̂x + y n̂y + z n̂z + r b̂z =

 x
y
z


n̂xyz

+ nRb ∗

 0
0
r


b̂xyz

~vQ =~vBcm + ~ωωωωωωωωωωωωωB ×~rQ/Bcm =

 ẋ
ẏ
ż


n̂xyz

+

 ωx

ωy

ωz


n̂xyz

×

 nRb ∗

 0
0
r


b̂xyz


2.2 Rotation

Particles have no orientation, so there is no need to do any rotational forces or kinematics.

For a rigid body, represent the angular velocity of body B as: ~ωωωωωωωωωωωωωB = ωx n̂x + ωy n̂y + ωz n̂z =

 ωx

ωy

ωz


n̂xyz

1



3 Equations of Motion

3.1 Translation

Newton’s 2nd Law relates forces on a body B (or particle Q) to the acceleration of the body’s center of mass:

~F
B

= mB ∗~aBcm ~F
Q

= mQ ∗~aQ

3.2 Rotation

Euler’s 3D rigid body equation relates the resultant moment on body B to its angular acceleration.
(Without diving into the subtleties, in this case we can treat moments and torques as the same thing.)

~M
B/Bcm

=
⇒

I
B/Bcm

· ~αααααααααααααB + ~ωωωωωωωωωωωωωB × (
⇒

I
B/Bcm

· ~ωωωωωωωωωωωωωB)

In the very special case when the inertia matrix of a body can be written in terms of a scalar I times the identity
matrix (e.g. for a sphere or box), the full form of Euler’s 3D rigid body equation collapses to:

~M
B/Bcm

= I ∗~αααααααααααααB ~M
B/Bcm

=
2

5
mr2 ∗~αααααααααααααB (for a sphere)

Note the moment about Bcm due to a force applied at point Q is: ~M
~F

Q
/Bcm

=~rQ/Bcm × ~F
Q

.

4 Numerical Integration

A simple (but poor-performing) integration scheme is explicit forward-Euler.

4.1 Translation

~vBcm [k + 1] = ~vBcm [k] +~aBcm [k] ∗ ∆t

~rBcm/No [k + 1] = ~rBcm/No [k] +~vBcm [k] ∗ ∆t

4.2 Rotation

~ωωωωωωωωωωωωωB[k + 1] = ~ωωωωωωωωωωωωωB[k] +~αααααααααααααB[k] ∗ ∆t

There are multiple ways to go from angular velocity to an orientation representation:

• If you use a quaternion q = [w x y z], you can do:

q[k + 1] = q[k] + ∆t ∗ (
1

2
∗H ∗~ωωωωωωωωωωωωωB[k])

where

H =


−x −y −z
w −z y
z w −x

−y x w


After each step, you should normalize the quaternion by dividing by its magnitude

√
w2 + x2 + y2 + z2.

• You can use your [ωx ωy ωz]∗∆t as an axis-angle representation, convert to a rotation matrix, and multiply
by your previous rotation:

nRb[k + 1] = Raxis−angle[k] ∗ nRb[k]

2


