CS277 - Experimental Haptics Lecture 7

Collision Detection II

Outline

- Problem definition and motivation
- Bounding volume hierarchies
- Spatial partitioning approaches

Point-sampled surfaces

Polyhedron Tests

Polyhedron Intersection Tests

Brute-Force Approach

Test segment against every primitive: O(n) complexity

Brute-Force Approach

Too Slow!

- Haptic rendering requires us to compute collisions within a millisecond time interval
- Typical meshes have thousands of primitives
- Collision detection is a search problem
 - Recall what you learned in CSI61
- Divide-and-conquer paradigm:
 - We can accelerate the operation by organizing our geometry into a tree data structure!

Two Approaches

- Bounding volume hierarchy
 - Partitions the object itself into smaller chunks that are fit within simple geometric primitives

- Spatial subdivision
 - Partitions the underlying space the object sits in

Spatial Partitioning

- Most direct extension of a binary search tree to three (or more!) dimensions
- Partitioning is more flexible, and can cake different forms:
 - Spatial hash (not really a tree)
 - Quadtree / octree
 - k-dimensional (k-D) tree
 - Binary space partition (BSP) tree

A Few Examples...

Spatial Hashing

CS277 - Experimental Haptics, Stanford University, Spring 2014

Spatial Hashing

- Extremely easy to implement
- Can provide constant time collision queries in the ideal case
- How do we decide what the grid spacing should be?

What about our other friend?

Spatial Hashing Limitations

Quadtree / Octree

Quadtree / Octree

- Very simple to implement
- Does not make any effort to partition the space efficiently
- Has a high branching factor
- Can be efficient when data is uniform

k-Dimensional Tree

k-Dimensional Trees

- Binary tree that partitions space along an axis-aligned plane
- Adaptive to the characteristics of the input geometry (more balanced tree)
- Many partitioning heuristics for construction:
 - Alternating x-y-z axes
 - Equal count vs. equal volume

Searching a k-D Tree

What About a Segment?

Binary Space Partition Tree

Binary Space Partition Tree

- Allows splitting along arbitrary plane
- Fewer objects or primitives are "split in the middle"
- Can require more effort to construct
- Slightly more storage overhead than a k-D tree

Spatial Partitioning Summary

- Different partitioning structures are embodiments of the same principle
- Supports O(log n) time query for a point and expected logarithmic time for a ray or segment
- Choose which one to use based on the characteristics of the geometry

The (Second) Task at Hand

How do we detect collision between two complex meshes?

Bounding Volume Hierarchies

- Similar idea to spatial partitioning, but break up the object instead
- Takes advantage of spatial coherence
- When objects collide, the contact set is generally small relative to the mesh size

Bounding Volume Hierarchies

- Many flavours:
 - Bounding spheres
 - Axis-aligned box
 - Oriented box
 - Polytope / convex hull
- Allows mesh collision detection using one common algorithm

BVH Collision Queries

- Rejection test: If bounding volumes do not intersect, then the objects (or parts within) cannot intersect
- If bounding volumes intersect, recursively query all pairs of bounding volumes at the next hierarchy level in each object
- Can track and report an (approximate) minimum separation distance, or simply report interference

Example: Bounding Spheres

- One large sphere surrounds the mesh
- Geometry within is partitioned into two parts
- The structure is recursive: spheres enclose sub-parts
- Leaf spheres contain one triangle, a few elements, or a small convex component

[from D. Ruspini et al., Proc. ACM SIGGRAPH, 1997.]

Bounding Sphere Construction

 Easiest intersection test in the book, but...

- How do we determine the bounding sphere?
- How do we partition the object geometry?

Bounding Sphere Construction

- Building the tree is expensive and often done as an offline preprocessing step
- If you have all the time in the world...
 - Try every possible partition
 - Compute the tightest bounding sphere
- In practice, heuristics are used for partitioning and a "good enough" bounding sphere is computed

Axis-Aligned Bounding Box

Intersection test is just as easy as spheres...

but parititioning and bounding is much easier!

AABB Collision Detection

So why doesn't everyone just use axis-aligned bounding boxes?

Rotation Dependent!

Oriented Bounding Boxes

- Tighter fit than spheres, axis-aligned boxes
- How would you orient the box?

Discrete Oriented Polytopes

An even tighter fit than oriented boxes

AABB OBB 8-DOP

How would you do an intersection test?

Types of Bounding Volumes

- Many shapes (primitives) can be used as bounding volumes
- Choice of bounding volume has computational efficiency tradeoffs

Bounding Volumes Summary

- Carefully crafted BVHs can facilitate fast mesh-mesh collision detection
- Choose the best variant for your geometry
- What is the algorithm's time complexity...
 - for typical queries?
 - in the worst case?
- What are the implications for their use in haptic rendering?

Summary

- Explored methods for mesh collision queries:
 - Spatial partitioning methods for segments
 - Bounding volume hierarchies for meshs
- Do they still work for deformable objects?

Unstructured Point Sets

Data Sources

Metaball Surfaces

- Soft objects proposed by Wyvill et al. 1986
- Radial basis functions with compact support
- Surface is implicitly defined by a threshold on the intensity field

Compact Support Function

- Define a field contribution function, C(r),
 for a given distance r from a point
- If the point has radius of influence R, we desire the function to be
 - compact: C(0) = 1 and C(R) = 0
 - smooth: C'(0) = 0 and C'(R) = 0

Contribution Function

[from G.Wyvill et al., The Visual Computer, 1986.]

Metaball Implicit Surface

The field function is defined by

$$f(\mathbf{x}) = \sum_{i}^{n} C\left(\|\mathbf{x} - \mathbf{p}_{i}\|, R_{i}\right)$$

And the implicit surface by

$$S(\mathbf{x}) = T - f(\mathbf{x}) = 0$$

How many points do we need to consider to evaluate the surface function at x?

Surface Threshold

Choosing a Threshold

[from A. Leeper et al., Proc. IEEE Intl. Conf. on Robotics and Automation, 2012.]

Choosing a Threshold

Metaball Surfaces

- Metaballs are good for
 - Results of fluid simulation
 - Noisy data
 - Sparsely sampled data
- Can you think of types of point data that a metaball surface would poorly represent?

Limitations with Metaballs

Point Set Surfaces

- Approximates a smooth surface from irregularly sampled points
- Create a local estimate of the surface at every point in space
- Test for intersection with the approximation

[from M. Alexa et al., IEEE Trans. on Visualization and Computer Graphics 9(1), 2003.]

Estimating Surface Position

- Weighted average of nearby points
- If we are at position **x**, estimate a point on the surface at

$$\mathbf{a}(\mathbf{x}) = \frac{\sum_{i=1}^{n} \theta_i(\|\mathbf{x} - \mathbf{p}_i\|)\mathbf{p}_i}{\sum_{i=1}^{n} \theta_i(\|\mathbf{x} - \mathbf{p}_i\|)}$$

- where θ is a weighting function of distance

Estimating Surface Normal

- Direction of smallest weighted covariance of nearby points
- If the weighted covariance is expressed as

$$\sigma_{\mathbf{n}}^{2}(\mathbf{x}) = \frac{\sum_{i=1}^{n} \theta_{i}(\|\mathbf{x} - \mathbf{p}_{i}\|) (\mathbf{n} \cdot (\mathbf{x} - \mathbf{p}_{i}))^{2}}{\sum_{i=1}^{n} \theta_{i}(\|\mathbf{x} - \mathbf{p}_{i}\|)}$$

• Then the surface normal direction is $\min_{\mathbf{n}} \sigma_{\mathbf{n}}(\mathbf{x})$

Point Set Implicit Surface

We can now define the surface by the implicit function

$$S(\mathbf{x}) = \mathbf{n}(\mathbf{x}) \cdot (\mathbf{x} - \mathbf{a}(\mathbf{x})) = 0$$

- This surface approximates the original shape if it was well-sampled with points
 - *i.e.* If the normals are well-defined within a neighborhood of the surface

Point Set Implicit Surface

[from A. Adamson & M. Alexa, Proc. Eurographics Symp. on Geometry Processing, 2003.]

Choosing a Weighting Function

Cyberware Rabbit, 67038 points

[from A. Adamson & M. Alexa, Proc. Eurographics Symp. on Geometry Processing, 2003.]

If you want to learn more...

Summary

- Point sets can be haptically rendered as implicit surfaces
- We examined two methods of formulation:
 - Metaballs (a.k.a. blobs, soft objects)
 - Point-sampled surface reconstruction

