
Haptic Rendering

CS277 - Experimental Haptics
Lecture 2

CS277 - Experimental Haptics, Stanford University, Spring 2014

Outline

‣ Announcements

‣ Human haptic perception

‣ Anatomy of a visual-haptic simulation

‣ Virtual wall and potential field rendering

‣ A note on timing...

CS277 - Experimental Haptics, Stanford University, Spring 2014

https://piazza.com/stanford/spring2014/cs277
CS277 - Experimental Haptics, Stanford University, Spring 2014

Sharing Devices...

CS277 - Experimental Haptics, Stanford University, Spring 2014

Haptic Perception
CS277 - Experimental Haptics, Stanford University, Spring 2014

Touch Perception

haptic perceptual
system

cutaneous receptors kinaesthetic receptors
1440 LEDERMAN AND KLATZKY

topic of debate), the somatosensory system is served by
two subsystems, a “what” system that deals with percep-
tual (and memory) functions, and a “where” system that
deals with the perceptual guidance of action. Evidence that
supports a “what/where” distinction for the somatosensory
system include, for example, fMRI and behavioral studies
by Reed, Klatzky, and Halgren (2005) and by Chan and
Newell (2008), respectively. Reed et al. (2005) showed
that haptic object recognition and object localization ac-
tivated inferior and superior parietal areas, respectively,
suggesting a correlation with the distinction between dor-
sal and ventral visual streams made earlier by Ungerleider
and Mishkin (1982). Chan and Newell showed behavioral
evidence for a task- dependent what/ where distinction that
transcends modalities by using a dual-task paradigm. Si-
multaneous “what” or “where” tasks were found to mutu-
ally interfere more than crossfunction tasks in both in-
tramodal and crossmodal conditions, indicating resource
pools that depended on the task demands but not on the
modality (vision, haptics) used to execute the task. Dijker-
man and De Haan (2007) have comprehensively evaluated
the neural and behavioral literatures for evidence of sepa-
rate processing streams used for somatosensory percep-
tion versus action (“what” vs. “how” systems), as well as
for distinguishing between haptic processing of external
targets and sites on the body. An important issue that arises
from this body of research is whether haptic processing of
shape taps into a visual “what” pathway by invoking vi-
sual imagery, a topic we consider further below.

For purposes of the present tutorial, we will organize
the following discussions of haptic perception in terms of
this functional distinction between “what” and “where”
systems.

The “What” System
The “what” system in touch processes surfaces, objects,

and their many different properties. The efficacy of this
processing pathway is demonstrated by the finding that
familiar objects are recognized quickly and with very high
accuracy by touch alone (Klatzky, Lederman, & Metzger,
1985). The foundation for this ability lies in the sensory
primitives signaled by the peripheral receptors. A broad
spectrum of properties results from further neural pro-
cessing of the receptor signals, with research providing
considerable insight into the computational nature of that
processing.

To begin with, it is useful to divide haptically acces-
sible object properties into two broad classes: material and
geometric. Material properties are defined as those inde-
pendent of the particular object sample being considered;
conversely, geometric properties describe the structure of
that object sample.

Spatial and Temporal Resolving Capacity
of the Skin

Before considering in the next section the haptic per-
ception of object properties, it is important to be aware of
the extent to which the cutaneous system is limited by its
ability to resolve spatial and temporal details presented

ture sensitivity, together with the primary functions with
which each mechanoreceptor population is associated.
The two additional peripheral receptor populations known
as thermoreceptors (Stevens, 1991) respond to increases
or decreases in skin temperature, and mediate the human
experiences of warmth and cold, respectively.

The kinesthetic inputs from mechanoreceptors in mus-
cles, tendons, and joints contribute to the human percep-
tion of limb position and limb movement in space (see re-
views by Gandevia, 1996; J. L. Taylor, 2009). Research in
the motor-control field tends to treat kinesthetic feedback
as sensory signals to be included in models (feedback,
feedforward) of limb movement and grasping. Hence, we
will consider the contributions of kinesthesis and kines-
thetic inputs only where they are inextricably bound up
with human haptic processing and representation—that
is, for purposes of sensing, perceiving, and thinking about
objects, their properties, and the space within which they
reside.

Cutaneous and kinesthetic inputs are combined and
weighted in different ways to serve various haptic func-
tions. In the discussion that follows, we treat complex
human haptic experience as being influenced by a variety
of factors at multiple levels of processing. Accordingly,
it is neither possible nor particularly fruitful to separate
human haptic function into modular compartments as was
once done (e.g., sensations, percepts, and cognitions).

“WHAT” AND “WHERE” TOUCH SYSTEMS

Touch scientists have been recently and vigorously de-
bating whether, like vision (and audition, a more recent

Figure 1. Vertical section through the glabrous skin of the
human hand. Schematic depiction of the two major layers of
the skin (epidermis and dermis), and the underlying subcuta-
neous tissue. The locations of the organized nerve terminals are
also shown. Mr, Meissner corpuscle; Ml, Merkel cell complex;
R, Ruffini ending; P, Pacinian corpuscle. From “Tactile Sensory
Coding in the Glabrous Skin of the Human Hand,” by R. S. Jo-
hansson and A. B. Vallbo, 1983, Trends in Neurosciences, 6, p. 28.
Copyright 1983 by Elsevier. Reprinted with permission.

CS277 - Experimental Haptics, Stanford University, Spring 2014

Cutaneous Perception

‣ Inputs from different types of
mechanoreceptors embedded in the skin

- vibration and texture perception

- pressure and skin stretch (grasped object)

CS277 - Experimental Haptics, Stanford University, Spring 2014

Kinaesthetic Perception

‣ Inputs from mechanoreceptors in muscles,
tendons, and joints

- limb position and movement

- larger contact forces and loads

CS277 - Experimental Haptics, Stanford University, Spring 2014

Cutaneous/Tactile Feedback

‣ Devices can be very difficult to realize

- requires high spatial actuator resolution

-

CS277 - Experimental Haptics, Stanford University, Spring 2014

Kinaesthetic Feedback

‣ Key realization: tool-mediated interaction

- system need only render tool contact forces

or

CS277 - Experimental Haptics, Stanford University, Spring 2014

Kinaesthetic Devices

‣ Driven by two common types of control
strategies

- Impedance-control haptic devices simulate
mechanical impedance

- Admittance-control haptic devices simulate
mechanical admittance

CS277 - Experimental Haptics, Stanford University, Spring 2014

Impedance vs Admittance

‣ Impedance devices

- sense position

- commanded force

‣Admittance devices

- sense force

- commanded position

CS277 - Experimental Haptics, Stanford University, Spring 2014

Impedance vs Admittance

‣ Impedance haptic devices

- are cheaper to build

- back-drivable

‣ Admittance haptic devices

- higher range of forces

- requires force sensor ($$$)

- generally less common

CS277 - Experimental Haptics, Stanford University, Spring 2014

Devices for CS277

‣ We will focus on studying

- kinaesthetic devices: tool-mediated interaction

- impedance control: render forces (impedances)

- 3-DOF actuated devices, 3- or 6-DOF sensed

CS277 - Experimental Haptics, Stanford University, Spring 2014

Visual-Haptic Simulation
CS277 - Experimental Haptics, Stanford University, Spring 2014

The Basics

How does a basic visual-haptic simulation work?

Virtual Environment (VE) Haptic Device

Avatar

CS277 - Experimental Haptics, Stanford University, Spring 2014

The Interface

position

force

CS277 - Experimental Haptics, Stanford University, Spring 2014

Haptic Rendering

❝
Haptic rendering is the process of computing

and generating forces in response to user
interactions with virtual objects.

❞

[From K. Salisbury et al., Proc. Symposium on Interactive 3D Graphics, 1995.]CS277 - Experimental Haptics, Stanford University, Spring 2014

Components

Another distinction between haptic interface devices
is their intrinsic mechanical behavior. Impedance hap-
tic devices simulate mechanical impedance—they read
position and send force. Admittance haptic devices sim-
ulate mechanical admittance—they read force and send
position. Simpler to design and much cheaper to pro-
duce, impedance-type architectures are most common.
Admittance-based devices, such as the Haptic Master,3

are generally used for applications requiring high forces
in a large workspace.

Haptic interface devices are also classified by the
number of DOF of motion or force present at the device-
body interface—that is, the number of dimensions char-
acterizing the possible movements or forces exchanged
between device and operator. A DOF can be passive or
actuated, sensed or not sensed.

Characteristics commonly considered desirable for
haptic interface devices include

■ low back-drive inertia and friction;
■ minimal constraints on motion imposed by the device

kinematics so free motion feels free;
■ symmetric inertia, friction, stiffness, and resonate-

frequency properties (thereby regularizing the device
so users don’t have to unconsciously compensate for
parasitic forces);

■ balanced range, resolution, and bandwidth of posi-
tion sensing and force reflection; and

■ proper ergonomics that let the human operator focus
when wearing or manipulating the haptic interface
as pain, or even discomfort, can distract the user,
reducing overall performance.

We consider haptic rendering algorithms applicable
to single- and multiple-DOF devices.

System architecture for haptic rendering
Haptic-rendering algorithms compute the correct

interaction forces between the haptic interface repre-
sentation inside the virtual environment and the virtual
objects populating the environment. Moreover, haptic-

rendering algorithms ensure that the haptic device cor-
rectly renders such forces on the human operator.

An avatar is the virtual representation of the haptic
interface through which the user physically interacts
with the virtual environment. Clearly the choice of avatar
depends on what’s being simulated and on the haptic
device’s capabilities. The operator controls the avatar’s
position inside the virtual environment. Contact between
the interface avatar and the virtual environment sets off
action and reaction forces. The avatar’s geometry and
the type of contact it supports regulates these forces.

Within a given application the user might choose
among different avatars. For example, a surgical tool
can be treated as a volumetric object exchanging forces
and positions with the user in a 6D space or as a pure
point representing the tool’s tip, exchanging forces and
positions in a 3D space.

Several components compose a typical haptic ren-
dering algorithm. We identify three main blocks, illus-
trated in Figure 3.

Collision-detection algorithms detect collisions
between objects and avatars in the virtual environment
and yield information about where, when, and ideally
to what extent collisions (penetrations, indentations,
contact area, and so on) have occurred.

Force-response algorithms compute the interaction
force between avatars and virtual objects when a colli-
sion is detected. This force approximates as closely as
possible the contact forces that would normally arise dur-
ing contact between real objects. Force-response algo-
rithms typically operate on the avatars’ positions, the
positions of all objects in the virtual environment, and
the collision state between avatars and virtual objects.
Their return values are normally force and torque vec-
tors that are applied at the device-body interface.

Hardware limitations prevent haptic devices from
applying the exact force computed by the force-response
algorithms to the user. Control algorithms command
the haptic device in such a way that minimizes the error
between ideal and applicable forces. The discrete-time
nature of the haptic-rendering algorithms often makes

Survey

26 January/February 2004

Haptic
device

Collision
detection VideoGraphics

engine

Visual renderingSimulation

Force
response

Control
algorithms

Simulation
engine

Haptic rendering

X S, X

Fr

Fd

Fd

3 We split haptic rendering into three main blocks. Collision-detection algorithms provide information about con-
tacts S occurring between an avatar at position X and objects in the virtual environment. Force-response algorithms
return the ideal interaction force Fd between avatar and virtual objects. Control algorithms return a force Fr to the
user approximating the ideal interaction force to the best of the device’s capabilities.

[From K. Salisbury et al., IEEE Computer Graphics & Applications 24(2), 2004.]CS277 - Experimental Haptics, Stanford University, Spring 2014

In this course...

Another distinction between haptic interface devices
is their intrinsic mechanical behavior. Impedance hap-
tic devices simulate mechanical impedance—they read
position and send force. Admittance haptic devices sim-
ulate mechanical admittance—they read force and send
position. Simpler to design and much cheaper to pro-
duce, impedance-type architectures are most common.
Admittance-based devices, such as the Haptic Master,3

are generally used for applications requiring high forces
in a large workspace.

Haptic interface devices are also classified by the
number of DOF of motion or force present at the device-
body interface—that is, the number of dimensions char-
acterizing the possible movements or forces exchanged
between device and operator. A DOF can be passive or
actuated, sensed or not sensed.

Characteristics commonly considered desirable for
haptic interface devices include

■ low back-drive inertia and friction;
■ minimal constraints on motion imposed by the device

kinematics so free motion feels free;
■ symmetric inertia, friction, stiffness, and resonate-

frequency properties (thereby regularizing the device
so users don’t have to unconsciously compensate for
parasitic forces);

■ balanced range, resolution, and bandwidth of posi-
tion sensing and force reflection; and

■ proper ergonomics that let the human operator focus
when wearing or manipulating the haptic interface
as pain, or even discomfort, can distract the user,
reducing overall performance.

We consider haptic rendering algorithms applicable
to single- and multiple-DOF devices.

System architecture for haptic rendering
Haptic-rendering algorithms compute the correct

interaction forces between the haptic interface repre-
sentation inside the virtual environment and the virtual
objects populating the environment. Moreover, haptic-

rendering algorithms ensure that the haptic device cor-
rectly renders such forces on the human operator.

An avatar is the virtual representation of the haptic
interface through which the user physically interacts
with the virtual environment. Clearly the choice of avatar
depends on what’s being simulated and on the haptic
device’s capabilities. The operator controls the avatar’s
position inside the virtual environment. Contact between
the interface avatar and the virtual environment sets off
action and reaction forces. The avatar’s geometry and
the type of contact it supports regulates these forces.

Within a given application the user might choose
among different avatars. For example, a surgical tool
can be treated as a volumetric object exchanging forces
and positions with the user in a 6D space or as a pure
point representing the tool’s tip, exchanging forces and
positions in a 3D space.

Several components compose a typical haptic ren-
dering algorithm. We identify three main blocks, illus-
trated in Figure 3.

Collision-detection algorithms detect collisions
between objects and avatars in the virtual environment
and yield information about where, when, and ideally
to what extent collisions (penetrations, indentations,
contact area, and so on) have occurred.

Force-response algorithms compute the interaction
force between avatars and virtual objects when a colli-
sion is detected. This force approximates as closely as
possible the contact forces that would normally arise dur-
ing contact between real objects. Force-response algo-
rithms typically operate on the avatars’ positions, the
positions of all objects in the virtual environment, and
the collision state between avatars and virtual objects.
Their return values are normally force and torque vec-
tors that are applied at the device-body interface.

Hardware limitations prevent haptic devices from
applying the exact force computed by the force-response
algorithms to the user. Control algorithms command
the haptic device in such a way that minimizes the error
between ideal and applicable forces. The discrete-time
nature of the haptic-rendering algorithms often makes

Survey

26 January/February 2004

Haptic
device

Collision
detection VideoGraphics

engine

Visual renderingSimulation

Force
response

Control
algorithms

Simulation
engine

Haptic rendering

X S, X

Fr

Fd

Fd

3 We split haptic rendering into three main blocks. Collision-detection algorithms provide information about con-
tacts S occurring between an avatar at position X and objects in the virtual environment. Force-response algorithms
return the ideal interaction force Fd between avatar and virtual objects. Control algorithms return a force Fr to the
user approximating the ideal interaction force to the best of the device’s capabilities.

We focus on the
haptic rendering
component.

CS277 - Experimental Haptics, Stanford University, Spring 2014

The Virtual Environment

‣ representations of
virtual objects

‣ real-time simulation of
physical behaviour

‣ geometric modeling and
computer animation
(CS348a, CS205b)

Another distinction between haptic interface devices
is their intrinsic mechanical behavior. Impedance hap-
tic devices simulate mechanical impedance—they read
position and send force. Admittance haptic devices sim-
ulate mechanical admittance—they read force and send
position. Simpler to design and much cheaper to pro-
duce, impedance-type architectures are most common.
Admittance-based devices, such as the Haptic Master,3

are generally used for applications requiring high forces
in a large workspace.

Haptic interface devices are also classified by the
number of DOF of motion or force present at the device-
body interface—that is, the number of dimensions char-
acterizing the possible movements or forces exchanged
between device and operator. A DOF can be passive or
actuated, sensed or not sensed.

Characteristics commonly considered desirable for
haptic interface devices include

■ low back-drive inertia and friction;
■ minimal constraints on motion imposed by the device

kinematics so free motion feels free;
■ symmetric inertia, friction, stiffness, and resonate-

frequency properties (thereby regularizing the device
so users don’t have to unconsciously compensate for
parasitic forces);

■ balanced range, resolution, and bandwidth of posi-
tion sensing and force reflection; and

■ proper ergonomics that let the human operator focus
when wearing or manipulating the haptic interface
as pain, or even discomfort, can distract the user,
reducing overall performance.

We consider haptic rendering algorithms applicable
to single- and multiple-DOF devices.

System architecture for haptic rendering
Haptic-rendering algorithms compute the correct

interaction forces between the haptic interface repre-
sentation inside the virtual environment and the virtual
objects populating the environment. Moreover, haptic-

rendering algorithms ensure that the haptic device cor-
rectly renders such forces on the human operator.

An avatar is the virtual representation of the haptic
interface through which the user physically interacts
with the virtual environment. Clearly the choice of avatar
depends on what’s being simulated and on the haptic
device’s capabilities. The operator controls the avatar’s
position inside the virtual environment. Contact between
the interface avatar and the virtual environment sets off
action and reaction forces. The avatar’s geometry and
the type of contact it supports regulates these forces.

Within a given application the user might choose
among different avatars. For example, a surgical tool
can be treated as a volumetric object exchanging forces
and positions with the user in a 6D space or as a pure
point representing the tool’s tip, exchanging forces and
positions in a 3D space.

Several components compose a typical haptic ren-
dering algorithm. We identify three main blocks, illus-
trated in Figure 3.

Collision-detection algorithms detect collisions
between objects and avatars in the virtual environment
and yield information about where, when, and ideally
to what extent collisions (penetrations, indentations,
contact area, and so on) have occurred.

Force-response algorithms compute the interaction
force between avatars and virtual objects when a colli-
sion is detected. This force approximates as closely as
possible the contact forces that would normally arise dur-
ing contact between real objects. Force-response algo-
rithms typically operate on the avatars’ positions, the
positions of all objects in the virtual environment, and
the collision state between avatars and virtual objects.
Their return values are normally force and torque vec-
tors that are applied at the device-body interface.

Hardware limitations prevent haptic devices from
applying the exact force computed by the force-response
algorithms to the user. Control algorithms command
the haptic device in such a way that minimizes the error
between ideal and applicable forces. The discrete-time
nature of the haptic-rendering algorithms often makes

Survey

26 January/February 2004

Haptic
device

Collision
detection VideoGraphics

engine

Visual renderingSimulation

Force
response

Control
algorithms

Simulation
engine

Haptic rendering

X S, X

Fr

Fd

Fd

3 We split haptic rendering into three main blocks. Collision-detection algorithms provide information about con-
tacts S occurring between an avatar at position X and objects in the virtual environment. Force-response algorithms
return the ideal interaction force Fd between avatar and virtual objects. Control algorithms return a force Fr to the
user approximating the ideal interaction force to the best of the device’s capabilities.

CS277 - Experimental Haptics, Stanford University, Spring 2014

Haptic Device

‣We treat the device as
a “black box”

‣We’ll crack it open
near the end of the
course

‣ Take ME347 to learn
more!

Another distinction between haptic interface devices
is their intrinsic mechanical behavior. Impedance hap-
tic devices simulate mechanical impedance—they read
position and send force. Admittance haptic devices sim-
ulate mechanical admittance—they read force and send
position. Simpler to design and much cheaper to pro-
duce, impedance-type architectures are most common.
Admittance-based devices, such as the Haptic Master,3

are generally used for applications requiring high forces
in a large workspace.

Haptic interface devices are also classified by the
number of DOF of motion or force present at the device-
body interface—that is, the number of dimensions char-
acterizing the possible movements or forces exchanged
between device and operator. A DOF can be passive or
actuated, sensed or not sensed.

Characteristics commonly considered desirable for
haptic interface devices include

■ low back-drive inertia and friction;
■ minimal constraints on motion imposed by the device

kinematics so free motion feels free;
■ symmetric inertia, friction, stiffness, and resonate-

frequency properties (thereby regularizing the device
so users don’t have to unconsciously compensate for
parasitic forces);

■ balanced range, resolution, and bandwidth of posi-
tion sensing and force reflection; and

■ proper ergonomics that let the human operator focus
when wearing or manipulating the haptic interface
as pain, or even discomfort, can distract the user,
reducing overall performance.

We consider haptic rendering algorithms applicable
to single- and multiple-DOF devices.

System architecture for haptic rendering
Haptic-rendering algorithms compute the correct

interaction forces between the haptic interface repre-
sentation inside the virtual environment and the virtual
objects populating the environment. Moreover, haptic-

rendering algorithms ensure that the haptic device cor-
rectly renders such forces on the human operator.

An avatar is the virtual representation of the haptic
interface through which the user physically interacts
with the virtual environment. Clearly the choice of avatar
depends on what’s being simulated and on the haptic
device’s capabilities. The operator controls the avatar’s
position inside the virtual environment. Contact between
the interface avatar and the virtual environment sets off
action and reaction forces. The avatar’s geometry and
the type of contact it supports regulates these forces.

Within a given application the user might choose
among different avatars. For example, a surgical tool
can be treated as a volumetric object exchanging forces
and positions with the user in a 6D space or as a pure
point representing the tool’s tip, exchanging forces and
positions in a 3D space.

Several components compose a typical haptic ren-
dering algorithm. We identify three main blocks, illus-
trated in Figure 3.

Collision-detection algorithms detect collisions
between objects and avatars in the virtual environment
and yield information about where, when, and ideally
to what extent collisions (penetrations, indentations,
contact area, and so on) have occurred.

Force-response algorithms compute the interaction
force between avatars and virtual objects when a colli-
sion is detected. This force approximates as closely as
possible the contact forces that would normally arise dur-
ing contact between real objects. Force-response algo-
rithms typically operate on the avatars’ positions, the
positions of all objects in the virtual environment, and
the collision state between avatars and virtual objects.
Their return values are normally force and torque vec-
tors that are applied at the device-body interface.

Hardware limitations prevent haptic devices from
applying the exact force computed by the force-response
algorithms to the user. Control algorithms command
the haptic device in such a way that minimizes the error
between ideal and applicable forces. The discrete-time
nature of the haptic-rendering algorithms often makes

Survey

26 January/February 2004

Haptic
device

Collision
detection VideoGraphics

engine

Visual renderingSimulation

Force
response

Control
algorithms

Simulation
engine

Haptic rendering

X S, X

Fr

Fd

Fd

3 We split haptic rendering into three main blocks. Collision-detection algorithms provide information about con-
tacts S occurring between an avatar at position X and objects in the virtual environment. Force-response algorithms
return the ideal interaction force Fd between avatar and virtual objects. Control algorithms return a force Fr to the
user approximating the ideal interaction force to the best of the device’s capabilities.

CS277 - Experimental Haptics, Stanford University, Spring 2014

Visual Rendering

‣Given a virtual
environment, render
its state on the screen
(in real time)

‣We will let CHAI3D
do this for us

‣CS148, CS248, CS348b

Another distinction between haptic interface devices
is their intrinsic mechanical behavior. Impedance hap-
tic devices simulate mechanical impedance—they read
position and send force. Admittance haptic devices sim-
ulate mechanical admittance—they read force and send
position. Simpler to design and much cheaper to pro-
duce, impedance-type architectures are most common.
Admittance-based devices, such as the Haptic Master,3

are generally used for applications requiring high forces
in a large workspace.

Haptic interface devices are also classified by the
number of DOF of motion or force present at the device-
body interface—that is, the number of dimensions char-
acterizing the possible movements or forces exchanged
between device and operator. A DOF can be passive or
actuated, sensed or not sensed.

Characteristics commonly considered desirable for
haptic interface devices include

■ low back-drive inertia and friction;
■ minimal constraints on motion imposed by the device

kinematics so free motion feels free;
■ symmetric inertia, friction, stiffness, and resonate-

frequency properties (thereby regularizing the device
so users don’t have to unconsciously compensate for
parasitic forces);

■ balanced range, resolution, and bandwidth of posi-
tion sensing and force reflection; and

■ proper ergonomics that let the human operator focus
when wearing or manipulating the haptic interface
as pain, or even discomfort, can distract the user,
reducing overall performance.

We consider haptic rendering algorithms applicable
to single- and multiple-DOF devices.

System architecture for haptic rendering
Haptic-rendering algorithms compute the correct

interaction forces between the haptic interface repre-
sentation inside the virtual environment and the virtual
objects populating the environment. Moreover, haptic-

rendering algorithms ensure that the haptic device cor-
rectly renders such forces on the human operator.

An avatar is the virtual representation of the haptic
interface through which the user physically interacts
with the virtual environment. Clearly the choice of avatar
depends on what’s being simulated and on the haptic
device’s capabilities. The operator controls the avatar’s
position inside the virtual environment. Contact between
the interface avatar and the virtual environment sets off
action and reaction forces. The avatar’s geometry and
the type of contact it supports regulates these forces.

Within a given application the user might choose
among different avatars. For example, a surgical tool
can be treated as a volumetric object exchanging forces
and positions with the user in a 6D space or as a pure
point representing the tool’s tip, exchanging forces and
positions in a 3D space.

Several components compose a typical haptic ren-
dering algorithm. We identify three main blocks, illus-
trated in Figure 3.

Collision-detection algorithms detect collisions
between objects and avatars in the virtual environment
and yield information about where, when, and ideally
to what extent collisions (penetrations, indentations,
contact area, and so on) have occurred.

Force-response algorithms compute the interaction
force between avatars and virtual objects when a colli-
sion is detected. This force approximates as closely as
possible the contact forces that would normally arise dur-
ing contact between real objects. Force-response algo-
rithms typically operate on the avatars’ positions, the
positions of all objects in the virtual environment, and
the collision state between avatars and virtual objects.
Their return values are normally force and torque vec-
tors that are applied at the device-body interface.

Hardware limitations prevent haptic devices from
applying the exact force computed by the force-response
algorithms to the user. Control algorithms command
the haptic device in such a way that minimizes the error
between ideal and applicable forces. The discrete-time
nature of the haptic-rendering algorithms often makes

Survey

26 January/February 2004

Haptic
device

Collision
detection VideoGraphics

engine

Visual renderingSimulation

Force
response

Control
algorithms

Simulation
engine

Haptic rendering

X S, X

Fr

Fd

Fd

3 We split haptic rendering into three main blocks. Collision-detection algorithms provide information about con-
tacts S occurring between an avatar at position X and objects in the virtual environment. Force-response algorithms
return the ideal interaction force Fd between avatar and virtual objects. Control algorithms return a force Fr to the
user approximating the ideal interaction force to the best of the device’s capabilities.

CS277 - Experimental Haptics, Stanford University, Spring 2014

Haptic vs. Visual Rendering

Visual
Rendering

Haptic
Rendering

CS277 - Experimental Haptics, Stanford University, Spring 2014

Bi-Directionality

Haptic
Rendering

‣ Bi-directional information flow is the most
distinguishing feature of haptic interfaces

‣ This has many consequences that we will
visit in later classes

CS277 - Experimental Haptics, Stanford University, Spring 2014

Getting to Know Your Falcon
CS277 - Experimental Haptics, Stanford University, Spring 2014

The Hardware

CS277 - Experimental Haptics, Stanford University, Spring 2014

The Software

‣ Download, compile the CHAI3D library

‣ No drivers necessary on Mac/Linux

‣ Three platforms supported:

- Mac OS X → Xcode

- MS Windows → Visual Studio

- Linux → makefiles

- CMake?

CS277 - Experimental Haptics, Stanford University, Spring 2014

Run CHAI3D Demo to Test

CS277 - Experimental Haptics, Stanford University, Spring 2014

Device Distribution

‣ April 7 (Mon) and April 8 (Tue)

‣ See Sonny in Clark Center E100 (Salisbury
Robotics Lab)

‣ Times TBD, but will be announced on class
email and on Piazza.

CS277 - Experimental Haptics, Stanford University, Spring 2014

Potential Fields
CS277 - Experimental Haptics, Stanford University, Spring 2014

Starting Simple

‣ A plane is one of the simplest virtual
environments we can conceive and render

‣ How can we render such a “virtual wall”?

F = f(x) = ?

CS277 - Experimental Haptics, Stanford University, Spring 2014

CS277 - Experimental Haptics, Stanford University, Spring 2014

Virtual Walls

‣ The simplest VE: a linear spring in 3D

‣ Can be used to study stability

‣ Useful building block for more complex
virtual environments and interactions

CS277 - Experimental Haptics, Stanford University, Spring 2014

Virtual Wall Algorithm

F (x) =

(
�kx if x > 0

0 otherwise

x

F

CS277 - Experimental Haptics, Stanford University, Spring 2014

Virtual Wall Stiffness

‣ Stiffness (k) affects
how the wall feels

avatar
F = �kx

|F |

x

ha
rd

er
 m

at
er

ial
s

softer m
aterials

CS277 - Experimental Haptics, Stanford University, Spring 2014

Another Shape

‣ What is the simplest way to render a
sphere in 3D?

CS277 - Experimental Haptics, Stanford University, Spring 2014

CS277 - Experimental Haptics, Stanford University, Spring 2014

Potential Field Examples

‣ Virtual wall is the simplest one

‣ A sphere that attracts toward its surface

‣ A sphere

‣ A box...

F (x, y, z) =

(
�k(x

2
+ y

2
+ z

2 � r

2
) if x

2
+ y

2
+ z

2
< r

2

0 otherwise

F (x, y, z) = �k(x2 + y

2 + z

2 � r

2)

CS277 - Experimental Haptics, Stanford University, Spring 2014

Potential Fields

‣ The term potential field
is borrowed from
physics/mechanics

‣ Force is a vector field
gradient of potential

‣We normally just skip
to defining force field

~F = rU

CS277 - Experimental Haptics, Stanford University, Spring 2014

Why Potential Fields?

‣ They make intuitive sense (3D springs)

‣ They are easy to compute

‣ ... but with simplicity comes limitations

CS277 - Experimental Haptics, Stanford University, Spring 2014

Summary

‣ Human haptic perception

- kinaesthetic feedback and impedance devices

‣ Anatomy of a visual-haptic simulation

- we’ll focus on haptic rendering

‣ Virtual wall and potential field rendering

‣ Time is of the essence!

CS277 - Experimental Haptics, Stanford University, Spring 2014

