#### CS276 - Information Retrieval and Web Search

Checking in. By the end of this week you need to have:

- Watched the online videos corresponding to the first 6 chapters of IIR or/and read chapters 1–6 of the book
- Done programming assignment 1 (due Thursday)
- Submitted 5 search queries for the Stanford domain (for PA3)
- Oh, and problem set 1 was due last Thursday  $\ensuremath{\mbox{\scriptsize $\odot$}}$

Today: Probabilistic models of spelling correction for PA2

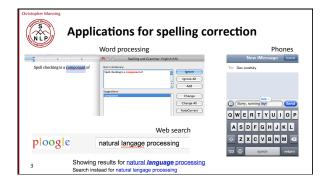
You should also look at chapter 3 video/book for other material

Thursday: Class lab on map-reduce



# Spelling Correction and the Noisy Channel

The Spelling Correction Task





#### **Spelling Tasks**

- Spelling Error Detection
- Spelling Error Correction:
  - Autocorrect
    - hte→the
  - Suggest a correction
  - Suggestion lists

4



#### Types of spelling errors

- Non-word Errors
- graffe → giraffe
- Real-word Errors
  - Typographical errors
  - three → there
     Cognitive Errors (homophones)
    - piece→peace,
    - too → two

5



#### **Rates of spelling errors**

26%: Web queries wang et al. 2003

13%: Retyping, no backspace: whitelaw et al. English&German

**7**%: Words corrected retyping on phone-sized organizer

2%: Words uncorrected on organizer Soukoreff & MacKenzie 2003

1-2%: Retyping: Kane and Wobbrock 2007, Gruden et al. 1983

6



#### Non-word spelling errors

- Non-word spelling error detection:
  - Any word not in a dictionary is an error
  - The larger the dictionary the better
- Non-word spelling error correction:
  - Generate candidates: real words that are similar to error
  - · Choose the one which is best:
    - Shortest weighted edit distance
    - · Highest noisy channel probability

7



#### Real word spelling errors

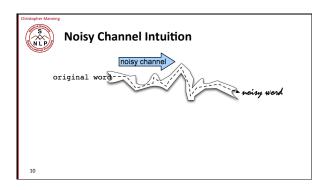
- For each word w, generate candidate set:
  - Find candidate words with similar pronunciations
  - Find candidate words with similar spelling
  - Include w in candidate set
- Choose best candidate
  - Noisy Channel

8



### Spelling Correction and the Noisy Channel

The Noisy Channel Model of Spelling





#### Noisy Channel aka Bayes' Rule

- We see an observation x of a misspelled word
- Find the correct word  $\hat{w}$

$$\begin{split} \hat{w} &= \underset{w \in V}{\operatorname{argmax}} P(w \mid x) \\ &= \underset{w \in V}{\operatorname{argmax}} \frac{P(x \mid w)P(w)}{P(x)} \\ &= \underset{w \in V}{\operatorname{argmax}} P(x \mid w)P(w) \end{split}$$

Christopher Mannir

# History: Noisy channel for spelling proposed around 1990

- IBM
  - Mays, Eric, Fred J. Damerau and Robert L. Mercer. 1991. Context based spelling correction. Information Processing and Management, 23(5), 517– 522
- AT&T Bell Labs
  - Kernighan, Mark D., Kenneth W. Church, and William A. Gale. 1990.
     A spelling correction program based on a noisy channel model.
     Proceedings of COLING 1990, 205-210



#### Non-word spelling error example

#### acress

13



#### **Candidate generation**

- Words with similar spelling
  - Small edit distance to error
- Words with similar pronunciation
  - Small edit distance of pronunciation to error

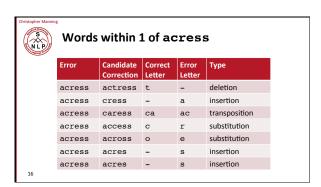
14



#### **Damerau-Levenshtein edit distance**

- · Minimal edit distance between two strings, where edits are:
  - Insertion
  - Deletion
  - Substitution
  - Transposition of two adjacent letters
- See IIR sec 3.3.3 for edit distance

15





#### **Candidate generation**

- 80% of errors are within edit distance 1
- Almost all errors within edit distance 2
- Also allow insertion of space or hyphen
  - thisidea  $\rightarrow$  this idea
  - inlaw → in-law

17



#### Wait, how do you generate the candidates?

- 1. Run through dictionary, check edit distance with each word
- 2. Generate all words within edit distance  $\leq k$  (e.g., k = 1 or 2) and then intersect them with dictionary
- Use a character k-gram index and find dictionary words that share "most" k-grams with word (e.g., by Jaccard coefficient)
   see IIR sec 3.3.4
- 4. Compute them fast with a Levenshtein finite state transducer
- 5. Have a precomputed hash of words to possible corrections

18



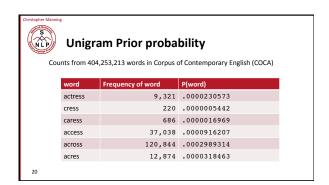
#### Language Model

• Just use the unigram probability of words

• Take big supply of words (your document collection with T tokens)

$$P(w) = \frac{C(w)}{T}$$

19





#### Channel model probability

- · Error model probability, Edit probability
- Kernighan, Church, Gale 1990
- Misspelled word  $x = x_1, x_2, x_3... x_m$
- Correct word  $w = w_1, w_2, w_3, ..., w_n$
- P(x|w) = probability of the edit
- (deletion/insertion/substitution/transposition)



## Computing error probability: confusion matrix

del[x,y]: count(xy typed as x)
ins[x,y]: count(x typed as xy)
sub[x,y]: count(x typed as y)
trans[x,y]: count(xy typed as yx)

Insertion and deletion conditioned on previous character

22



#### Confusion matrix for spelling errors

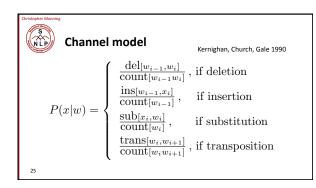


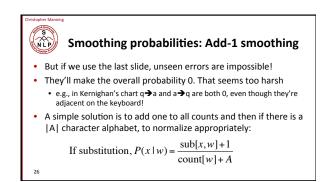


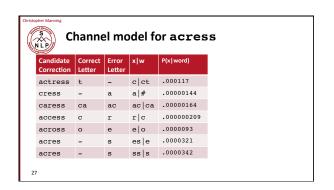
#### Generating the confusion matrix

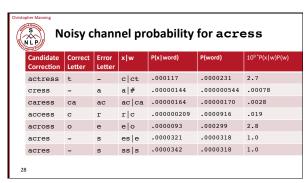
- Peter Norvig's list of errors
- Peter Norvig's list of counts of single-edit errors
  - All Peter Norvig's ngrams data links: <a href="http://norvig.com/ngrams/">http://norvig.com/ngrams/</a>

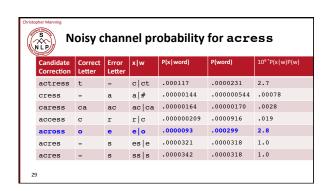
24

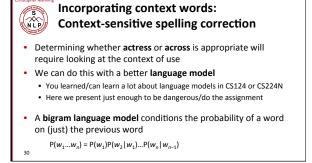














#### **Incorporating context words**

- For unigram counts, P(w) is always non-zero
  - if our dictionary is derived from the document collection
- This won't be true of  $P(w_k|w_{k-1})$ . We need to **smooth**
- We could use add-1 smoothing on this conditional distribution
- But here's a better way: interpolate a unigram and a bigram:

 $\mathsf{P}_{\mathsf{li}}(w_k \,|\, w_{k-1}) = \lambda \mathsf{P}_{\mathsf{uni}}(w_1) + (1 - \lambda) \mathsf{P}_{\mathsf{mle}}(w_k \,|\, w_{k-1})$ 

- $P_{mle}(w_k | w_{k-1}) = C(w_k | w_{k-1}) / C(w_{k-1})$
- This is called a "maximum likelihood estimate" (mle)
- For categorical variables you get an mle by just counting and dividing



#### All the important fine points

- Our unigram probability  $P_{uni}(w_k) = C(w_k) / T$  is also an mle
- This is okay if our dictionary is only words in the document collection will be non-zero Otherwise we'd need to smooth it to avoid zeroes (e.g., add-1 smoothing)
- Note that we have several probability distributions for words
- Keep them straight!
- You might want/need to work with log probabilities:
  - $\log P(w_1...w_n) = \log P(w_1) + \log P(w_2|w_1) + ... + \log P(w_n|w_{n-1})$
  - Otherwise, be very careful about floating point underflow
- Our query may be words anywhere in a document

  - We'll start the bigram estimate of a sequence with a unigram estimate
     Often, people instead condition on a start-of-sequence symbol, but not good here
     Because of this, the unigram and bigram counts have different totals. Not a problem



#### Using a bigram language model

- "a stellar and versatile acress whose combination of sass and glamour ... '
- Counts from the Corpus of Contemporary American English with add-1 smoothing
- P(actress|versatile)=.000021 P(whose|actress) = .0010
- P(across|versatile) =.000021 P(whose|across) = .000006
- P("versatile actress whose") = .000021\*.0010 = 210 x10<sup>-10</sup>
- P("versatile across whose") = .000021\*.000006 = 1 x10<sup>-10</sup>



#### Using a bigram language model

- "a stellar and versatile acress whose combination of sass and glamour...
- Counts from the Corpus of Contemporary American English with add-1 smoothing
- P(actress|versatile)=.000021 P(whose|actress) = .0010
- P(across|versatile) =.000021 P(whose|across) = .000006
- $P("versatile actress whose") = .000021*.0010 = 210 x10^{-10}$
- $P("versatile across whose") = .000021*.000006 = 1 x10^{-10}$



#### **Evaluation**

- Some spelling error test sets
  - · Wikipedia's list of common English misspelling
  - Aspell filtered version of that list
  - Birkbeck spelling error corpus
  - Peter Norvig's list of errors (includes Wikipedia and Birkbeck, for training or testing)



## **Spelling** Correction and the **Noisy Channel**

**Real-Word Spelling** Correction



#### Real-word spelling errors

- ...leaving in about fifteen *minuets* to go to her house.
- The design an construction of the system...
- Can they lave him my messages?
- The study was conducted mainly be John Black.
- 25-40% of spelling errors are real words Kukich 1992

37



#### Solving real-word spelling errors

- For each word in sentence
  - Generate candidate set
    - the word itself
    - all single-letter edits that are English words
    - words that are homophones
- Choose best candidates
  - Noisy channel model

38



#### Noisy channel for real-word spell correction

- Given a sentence w<sub>1</sub>,w<sub>2</sub>,w<sub>3</sub>,...,w<sub>n</sub>
- Generate a set of candidates for each word w<sub>i</sub>
  - Candidate( $\mathbf{w}_1$ ) = { $\mathbf{w}_1$ ,  $\mathbf{w'}_1$ ,  $\mathbf{w''}_1$ ,  $\mathbf{w'''}_1$ ,...}
  - Candidate(w<sub>2</sub>) = {w<sub>2</sub>, w'<sub>2</sub>, w''<sub>2</sub>, w'''<sub>2</sub>,...}
  - Candidate( $w_n$ ) = { $w_n$ ,  $w'_n$ ,  $w''_n$ ,  $w'''_n$ ,...}
- Choose the sequence W that maximizes P(W)

