## Introduction to Information Retrieval

CS276: Information Retrieval and Web Search Christopher Manning and Pandu Nayak

Spelling Correction

## The course thus far ...

Index construction Index compression Efficient boolean querying

Chapters 1, 2, 4, 5

Coursera lectures 1, 2, 3, 4

Spelling correction

Chapter 3

Coursera lecture 5 (mainly some parts)

This lecture (PA #2!)



#### **Applications for spelling correction**

|                                       | Word processing                                                                                                                                 | Phones                                                                                      |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| · · · · · · · · · · · · · · · · · · · | Spelling and Grammar: English (US)                                                                                                              | New iMessage Cancel                                                                         |
| Spell checking is a componant of      | Not in dictionary:   Spell checking is a componant of Ignore   Ignore All   Add   Suggestions:    component   Change   Change All   AutoCorrect | To: Dan Jurafsky          Iate ×         Sorry, running layr         Sorry         ERTYUIOF |
|                                       | Web search                                                                                                                                      | ASDFGHJKL                                                                                   |
|                                       | natural langage processing                                                                                                                      |                                                                                             |

Showing results for natural language processing Search instead for natural langage processing

Ρ

X

## Rates of spelling errors

# Depending on the application, ~1–20% error rates

- 26%: Web queries Wang et al. 2003
- **13**%: Retyping, no backspace: Whitelaw *et al.* English&German
- **7**%: Words corrected retyping on phone-sized organizer
- 2%: Words uncorrected on organizer Soukoreff & MacKenzie 2003
- **1-2%:** Retyping: Kane and Wobbrock 2007, Gruden et al. 1983

## Spelling Tasks

- Spelling Error Detection
- Spelling Error Correction:
  - Autocorrect
    - hte→the
  - Suggest a correction
  - Suggestion lists

## Types of spelling errors

- Non-word Errors
  - graffe  $\rightarrow$  giraffe
- Real-word Errors
  - Typographical errors
    - three  $\rightarrow$  there
  - Cognitive Errors (homophones)
    - piece  $\rightarrow$  peace,
    - too → two
    - your →you're
- Non-word correction was historically mainly context insensitive
- Real-word correction almost needs to be context sensitive

#### Non-word spelling errors

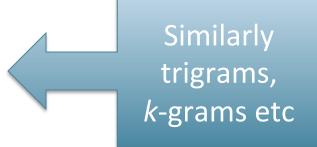
- Non-word spelling error detection:
  - Any word not in a *dictionary* is an error
  - The larger the dictionary the better ... up to a point
  - (The Web is full of mis-spellings, so the Web isn't necessarily a great dictionary ...)
- Non-word spelling error correction:
  - Generate candidates: real words that are similar to error
  - Choose the one which is best:
    - Shortest weighted edit distance
    - Highest noisy channel probability

### Real word & non-word spelling errors

- For each word *w*, generate candidate set:
  - Find candidate words with similar pronunciations
  - Find candidate words with similar spellings
  - Include w in candidate set
- Choose best candidate
  - Noisy Channel view of spell errors
  - Context-sensitive so have to consider whether the surrounding words "make sense"
  - Flying <u>form</u> Heathrow to LAX → Flying <u>from</u> Heathrow to LAX

### Terminology

- These are <u>character bigrams</u>:
  - st, pr, an ...
- These are <u>word bigrams</u>:
  - palo alto, flying from, road repairs



- In today's class, we will generally deal with word bigrams
- In the accompanying Coursera lecture, we mostly deal with *character* bigrams (because we cover stuff complementary to what we're discussing here)

## The Noisy Channel Model of Spelling INDEPENDENT WORD SPELLING CORRECTION

#### **Noisy Channel Intuition**



#### Noisy Channel = Bayes' Rule

- We see an observation x of a misspelled word
- Find the correct word  $\hat{w}$

$$\hat{w} = \underset{w \in V}{\operatorname{argmax}} P(w \mid x)$$
$$= \underset{w \in V}{\operatorname{argmax}} \frac{P(x \mid w)P(w)}{P(x)}$$
Bayes
$$= \underset{w \in V}{\operatorname{argmax}} P(x \mid w)P(w)$$
$$= \underset{w \in V}{\operatorname{argmax}} P(x \mid w)P(w)$$

# History: Noisy channel for spelling proposed around 1990

#### IBM

 Mays, Eric, Fred J. Damerau and Robert L. Mercer. 1991.
 Context based spelling correction. *Information Processing* and Management, 23(5), 517–522

#### AT&T Bell Labs

Kernighan, Mark D., Kenneth W. Church, and William A.
 Gale. 1990.

<u>A spelling correction program based on a noisy channel</u> <u>model</u>. Proceedings of COLING 1990, 205-210

#### Non-word spelling error example

#### acress

### **Candidate generation**

- Words with similar spelling
  - Small <u>edit distance</u> to error
- Words with similar pronunciation
  - Small distance of pronunciation to error
- In this class lecture we mostly won't dwell on *efficient* candidate generation
- A lot more about candidate generation in the accompanying Coursera material

Introduction to Information Retrieval

#### Candidate Testing:

### Damerau-Levenshtein edit distance

- Minimal edit distance between two strings, where edits are:
  - Insertion
  - Deletion
  - Substitution
  - Transposition of two adjacent letters
- See *IIR* sec 3.3.3 for edit distance

Introduction to Information Retrieval

#### Words within 1 of acress

| Error  | Candidate<br>Correction | Correct<br>Letter | Error<br>Letter | Туре          |
|--------|-------------------------|-------------------|-----------------|---------------|
| acress | actress                 | t                 | -               | deletion      |
| acress | cress                   | -                 | a               | insertion     |
| acress | caress                  | ca                | ac              | transposition |
| acress | access                  | С                 | r               | substitution  |
| acress | across                  | 0                 | е               | substitution  |
| acress | acres                   | _                 | S               | insertion 17  |

#### **Candidate generation**

- 80% of errors are within edit distance 1
- Almost all errors within edit distance 2
- Also allow insertion of space or hyphen
  - thisidea  $\rightarrow$  this idea
  - inlaw  $\rightarrow$  in-law
- Can also allow merging words
  - data base  $\rightarrow$  database
  - For short texts like a query, can just regard whole string as one item from which to produce edits

### How do you generate the candidates?

- Run through dictionary, check edit distance with each word
- 2. Generate all words within edit distance  $\leq k$  (e.g., k = 1 or 2) and then intersect them with dictionary
- Use a character k-gram index and find dictionary words that share "most" k-grams with word (e.g., by Jaccard coefficient)
  - see *IIR* sec 3.3.4
- 4. Compute them fast with a Levenshtein finite state transducer
- 5. Have a precomputed map of words to possible corrections

### A paradigm ...

- We want the best spell corrections
- Instead of finding the very best, we
  - Find a subset of pretty good corrections
    - (say, edit distance at most 2)
  - Find the best amongst them
- These may not be the actual best
- This is a recurring paradigm in IR including finding the best docs for a query, best answers, best ads ...
  - Find a good candidate set
  - Find the top *K* amongst them and return them as the best

Introduction to Information Retrieval

## Let's say we've generated candidates: Now back to Bayes' Rule

- We see an observation x of a misspelled word
- Find the correct word  $\hat{w}$

$$\hat{w} = \underset{w \in V}{\operatorname{argmax}} P(w \mid x)$$

$$= \underset{w \in V}{\operatorname{argmax}} \frac{P(x \mid w)P(w)}{P(x)}$$

$$= \underset{w \in V}{\operatorname{argmax}} P(x \mid w)P(w) \quad \text{What's } P(w)?$$

### Language Model

 Take a big supply of words (your document collection with *T* tokens); let *C(w)* = # occurrences of *w*

$$P(w) = \frac{C(w)}{T}$$

 In other applications – you can take the supply to be typed queries (suitably filtered) – when a static dictionary is inadequate

#### **Unigram Prior probability**

Counts from 404,253,213 words in Corpus of Contemporary English (COCA)

| word    | Frequency of<br>word | P(w)        |
|---------|----------------------|-------------|
| actress | 9,321                | .0000230573 |
| cress   | 220                  | .000005442  |
| caress  | 686                  | .000016969  |
| access  | 37,038               | .0000916207 |
| across  | 120,844              | .0002989314 |
| acres   | 12,874               | .0000318463 |

#### Channel model probability

- Error model probability, Edit probability
- Kernighan, Church, Gale 1990
- Misspelled word  $x = x_1, x_2, x_3... x_m$
- Correct word  $w = w_1, w_2, w_3, ..., w_n$
- P(x|w) = probability of the edit
  - (deletion/insertion/substitution/transposition)

# Computing error probability: confusion "matrix"

| <pre>del[x,y]:</pre>   | count(xy typed as x)  |
|------------------------|-----------------------|
| <pre>ins[x,y]:</pre>   | count(x typed as xy)  |
| <pre>sub[x,y]:</pre>   | count(y typed as x)   |
| <pre>trans[x,y]:</pre> | count(xy typed as yx) |

Insertion and deletion conditioned on previous character

#### Confusion matrix for substitution

|   |     |          |    |    | S   | ub[] | <u> X, Y</u> | ] = | Sub | stitı | itio |    |        |          |    | ect) f | or | Y (( | orr | ect) |    |   |      |   |          |          |
|---|-----|----------|----|----|-----|------|--------------|-----|-----|-------|------|----|--------|----------|----|--------|----|------|-----|------|----|---|------|---|----------|----------|
| X |     |          |    |    |     |      |              |     |     |       |      | Y  | ' (coi | rrect)   |    |        |    |      |     |      |    |   |      |   |          |          |
|   | a   | <u>b</u> | С  | d  | e   | f    | g            | h   | i   | j     | k    | 1  | m      | <u>n</u> | 0  | p      | q  | r    | S   | t    | u  | V | W    | X | <u>y</u> | <u>Z</u> |
| a | 0   | 0        | 7  | 1  | 342 | 0    | 0            | 2   | 118 | 0     | 1    | 0  | 0      | 3        | 76 | 0      | 0  | 1    | 35  | 9    | 9  | 0 | 1    | 0 | 5        | 0        |
| b | 0   | 0        | 9  | 9  | 2   | 2    | 3            | 1   | 0   | 0     | 0    | 5  | 11     | 5        | 0  | 10     | 0  | 0    | 2   | 1    | 0  | 0 | 8    | 0 | 0        | 0        |
| c | 6   | 5        | 0  | 16 | 0   | 9    | 5            | 0   | 0   | 0     | 1    | 0  | 7      | 9        | 1  | 10     | 2  | 5    | 39  | 40   | 1  | 3 | 7    | 1 | 1        | 0        |
| d | 1   | 10       | 13 | 0  | 12  | 0    | 5            | 5   | 0   | 0     | 2    | 3  | 7      | 3        | 0  | 1      | 0  | 43   | 30  | 22   | 0  | 0 | 4    | 0 | 2        | 0        |
| c | 388 | 0        | 3  | 11 | 0   | 2    | 2            | 0   | 89  | 0     | 0    | 3  | 0      | 5        | 93 | 0      | 0  | 14   | 12  | 6    | 15 | 0 | 1    | 0 | 18       | 0        |
| f | 0   | 15       | 0  | 3  | 1   | 0    | 5            | 2   | 0   | 0     | 0    | 3  | 4      | 1        | 0  | 0      | 0  | 6    | 4   | 12   | 0  | 0 | 2    | 0 | 0        | 0        |
| g | 4   | 1        | 11 | 11 | 9   | 2    | 0            | 0   | 0   | 1     | 1    | 3  | 0      | 0        | 2  | 1      | 3  | 5    | 13  | 21   | 0  | 0 | 1    | 0 | 3        | 0        |
| h | 1   | 8        | 0  | 3  | 0   | 0    | 0            | 0   | 0   | 0     | 2    | 0  | 12     | 14       | 2  | 3      | 0  | 3    | 1   | 11   | 0  | 0 | 2    | 0 | 0        | 0        |
| i | 103 | 0        | 0  | 0  | 146 | 0    | 1            | 0   | 0   | 0     | 0    | 6  | 0      | 0        | 49 | 0      | 0  | 0    | 2   | 1    | 47 | 0 | 2    | 1 | 15       | 0        |
| j | 0   | 1        | 1  | 9  | 0   | 0    | 1            | 0   | 0   | 0     | 0    | 2  | 1      | 0        | 0  | 0      | 0  | 0    | 5   | 0    | 0  | 0 | 0    | 0 | 0        | 0        |
| k | 1   | 2        | 8  | 4  | 1   | 1    | 2            | 5   | 0   | 0     | 0    | 0  | 5      | 0        | 2  | 0      | 0  | 0    | 6   | 0    | 0  | 0 | -, 4 | 0 | 0        | 3        |
| 1 | 2   | 10       | 1  | 4  | 0   | 4    | 5            | 6   | 13  | 0     | 1    | 0  | 0      | 14       | 2  | 5      | 0  | 11   | 10  | 2    | 0  | 0 | 0    | 0 | 0        | 0        |
| m | 1   | 3        | 7  | 8  | 0   | 2    | 0            | 6   | 0   | 0     | 4    | 4  | 0      | 180      | 0  | 6      | 0  | 0    | 9   | 15   | 13 | 3 | 2    | 2 | 3        | 0        |
| n | 2   | 7        | 6  | 5  | 3   | 0    | 1            | 19  | 1   | 0     | 4    | 35 | 78     | 0        | 0  | 7      | 0  | 28   | 5   | 7    | 0  | 0 | 1    | 2 | 0        | 2        |
| 0 | 91  | 1        | 1  | 3  | 116 | 0    | 0            | 0   | 25  | 0     | 2    | 0  | 0      | 0        | 0  | 14     | 0  | 2    | 4   | 14   | 39 | 0 | 0    | 0 | 18       | 0        |
| P | 0   | 11       | 1  | 2  | 0   | 6    | 5            | 0   | 2   | 9     | 0    | 2  | 7      | 6        | 15 | 0      | 0  | 1    | 3   | 6    | 0  | 4 | 1    | 0 | 0        | 0        |
| q | 0   | 0        | 1  | 0  | 0   | 0    | 27           | 0   | 0   | 0     | 0    | 0  | 0      | 0        | 0  | 0      | 0  | 0    | 0   | 0    | 0  | 0 | 0    | 0 | 0        | 0        |
| r | 0   | 14       | 0  | 30 | 12  | 2    | 2            | 8   | 2   | 0     | 5    | 8  | 4      | 20       | 1  | 14     | 0  | 0    | 12  | 22   | 4  | 0 | 0    | 1 | 0        | 0        |
| 8 | 11  | 8        | 27 | 33 | 35  | 4    | 0            | 1   | 0   | 1     | 0    | 27 | 0      | 6        | 1  | 7      | 0  | 14   | 0   | 15   | 0  | 0 | 5    | 3 | 20       | 1        |
| t | 3   | 4        | 9  | 42 | 7   | 5    | 19           | 5   | 0   | 1     | 0    | 14 | 9      | 5        | 5  | 6      | 0  | 11   | 37  | 0    | 0  | 2 | 19   | 0 | 7        | 6        |
| u | 20  | 0        | 0  | 0  | 44  | 0    | 0            | 0   | 64  | 0     | 0    | 0  | 0      | 2        | 43 | 0      | 0  | 4    | 0   | 0    | 0  | 0 | 2    | 0 | 8        | 0        |
| V | 0   | 0        | 7  | 0  | 0   | 3    | 0            | 0   | 0   | 0     | 0    | 1  | 0      | 0        | 1  | 0      | 0  | 0    | 8   | 3    | 0  | 0 | 0    | 0 | 0        | 0        |
| w | 2   | 2        | 1  | 0  | 1   | 0    | 0            | 2   | 0   | 0     | 1    | 0  | 0      | 0        | 0  | 7      | 0  | 6    | 3   | 3    | 1  | 0 | 0    | 0 | 0        | 0        |
| x | 0   | 0        | 0  | 2  | 0   | 0    | 0            | 0   | 0   | 0     | 0    | 0  | 0      | 0        | 0  | 0      | 0  | 0    | 9   | 0    | 0  | 0 | 0    | 0 | 0        | 0        |
| у | 0   | 0        | 2  | 0  | 15  | 0    | 1            | 7   | 15  | 0     | 0    | 0  | 2      | 0        | 6  | 1      | 0  | 7    | 36  | 8    | 5  | 0 | 0    | 1 | 0        | 0        |
| z | 0   | 0        | 0  | 7  | 0   | 0    | 0            | 0   | 0   | 0     | 0    | 7  | 5      | 0        | 0  | 0      | 0  | 2    | 21  | 3    | 0  | 0 | 0    | 0 | 3        | 0        |

Nearby keys



#### Generating the confusion matrix

- Peter Norvig's list of errors
- Peter Norvig's list of counts of single-edit errors
  - All Peter Norvig's ngrams data links: <u>http://norvig.com/ngrams/</u>

#### Channel model

Kernighan, Church, Gale 1990

$$P(x|w) = \begin{cases} \frac{\operatorname{del}[w_{i-1}, w_i]}{\operatorname{count}[w_{i-1}w_i]}, & \text{if deletion} \\ \frac{\operatorname{ins}[w_{i-1}, x_i]}{\operatorname{count}[w_{i-1}]}, & \text{if insertion} \\ \frac{\operatorname{sub}[x_i, w_i]}{\operatorname{count}[w_i]}, & \text{if substitution} \\ \frac{\operatorname{trans}[w_i, w_{i+1}]}{\operatorname{count}[w_iw_{i+1}]}, & \text{if transposition} \end{cases}$$

29

# Smoothing probabilities: Add-1 smoothing

- But if we use the confusion matrix example, unseen errors are impossible!
- They'll make the overall probability 0. That seems too harsh
  - e.g., in Kernighan's chart q→a and a→q are both 0, even though they're adjacent on the keyboard!
- A simple solution is to add 1 to all counts and then if there is a |A| character alphabet, to normalize appropriately:

If substitution, 
$$P(x | w) = \frac{\operatorname{sub}[x, w] + 1}{\operatorname{count}[w] + A}$$

#### Channel model for acress

| Candidate<br>Correction | Correct<br>Letter | Error<br>Letter | <b>x/w</b> | P(x   w)               |
|-------------------------|-------------------|-----------------|------------|------------------------|
| actress                 | t                 | -               | c ct       | .000117                |
| cress                   | _                 | a               | a #        | .0000144               |
| caress                  | са                | ac              | ac ca      | .0000164               |
| access                  | С                 | r               | r c        | .00000209              |
| across                  | 0                 | е               | e o        | .000093                |
| acres                   | _                 | S               | es e       | .0000321               |
| acres                   | _                 | S               | sss        | .0000342 <sub>31</sub> |

| Introduction to Information Retrieval |                   |                 |            |            |            |                                         |  |  |  |  |  |  |
|---------------------------------------|-------------------|-----------------|------------|------------|------------|-----------------------------------------|--|--|--|--|--|--|
| Candidate<br>Correction               | Correct<br>Letter | Error<br>Letter | <b>x w</b> | P(x   w)   | P(w)       | 10 <sup>9 *</sup><br>P(x   w) *<br>P(w) |  |  |  |  |  |  |
| actress                               | t                 | -               | c ct       | .000117    | .0000231   | 2.7                                     |  |  |  |  |  |  |
| cress                                 | -                 | a               | a #        | .00000144  | .000000544 | .00078                                  |  |  |  |  |  |  |
| caress                                | са                | ac              | ac <br>ca  | .00000164  | .00000170  | .0028                                   |  |  |  |  |  |  |
| access                                | С                 | r               | r c        | .000000209 | .0000916   | .019                                    |  |  |  |  |  |  |
| across                                | 0                 | е               | e o        | .0000093   | .000299    | 2.8                                     |  |  |  |  |  |  |
| acres                                 | -                 | S               | es e       | .0000321   | .0000318   | 1.0                                     |  |  |  |  |  |  |
| acres                                 | _                 | S               | sss        | .0000342   | .0000318   | <b>1.0</b> <sup>32</sup>                |  |  |  |  |  |  |

| Candidate<br>Correction | Correct<br>Letter | Error<br>Letter | x/w       | P(x   w)   | P(w)       | 10 <sup>9 *</sup> P(x <br>w)P(w) |
|-------------------------|-------------------|-----------------|-----------|------------|------------|----------------------------------|
| actress                 | t                 | -               | c <br>ct  | .000117    | .0000231   | 2.7                              |
| cress                   | -                 | a               | a #       | .00000144  | .000000544 | .00078                           |
| caress                  | са                | ac              | ac <br>ca | .00000164  | .0000170   | .0028                            |
| access                  | С                 | r               | r c       | .000000209 | .0000916   | .019                             |
| across                  | 0                 | е               | elo       | .0000093   | .000299    | 2.8                              |
| acres                   | _                 | S               | es <br>e  | .0000321   | .0000318   | 1.0                              |
| acres                   | _                 | S               | ss        | .0000342   | .0000318   | <b>1.0</b> <sub>33</sub>         |

#### Evaluation

#### Some spelling error test sets

- Wikipedia's list of common English misspelling
- Aspell filtered version of that list
- Birkbeck spelling error corpus
- Peter Norvig's list of errors (includes Wikipedia and Birkbeck, for training or testing)

## Context-Sensitive Spelling Correction SPELLING CORRECTION WITH THE NOISY CHANNEL

#### Real-word spelling errors

- ...leaving in about fifteen *minuets* to go to her house.
- The design an construction of the system...
- Can they *lave* him my messages?
- The study was conducted mainly be John Black.
- 25-40% of spelling errors are real words Kukich 1992

# Context-sensitive spelling error fixing

- For each word in sentence (phrase, query ...)
  - Generate candidate set
    - the word itself
    - all single-letter edits that are English words
    - words that are homophones
    - (all of this can be pre-computed!)
- Choose best candidates
  - Noisy channel model

#### Noisy channel for real-word spell correction

- Given a sentence w<sub>1</sub>, w<sub>2</sub>, w<sub>3</sub>,..., w<sub>n</sub>
- Generate a set of candidates for each word w<sub>i</sub>
  - Candidate(w<sub>1</sub>) = {w<sub>1</sub>, w'<sub>1</sub>, w''<sub>1</sub>, w'''<sub>1</sub>,...}
  - Candidate $(w_2) = \{w_2, w'_2, w''_2, w''_2, ...\}$
  - Candidate $(w_n) = \{w_n, w'_n, w''_n, w''_n, \dots\}$
- Choose the sequence W that maximizes P(W)

Incorporating context words: Context-sensitive spelling correction

- Determining whether actress or across is appropriate will require looking at the context of use
- We can do this with a better language model
  - You learned/can learn a lot about language models in CS124 or CS224N
  - Here we present just enough to be dangerous/do the assignment
- A bigram language model conditions the probability of a word on (just) the previous word

 $P(w_1...w_n) = P(w_1)P(w_2 | w_1)...P(w_n | w_{n-1})$ 

### Incorporating context words

- For unigram counts, P(w) is always non-zero
  - if our dictionary is derived from the document collection
- This won't be true of  $P(w_k | w_{k-1})$ . We need to **smooth**
- We could use add-1 smoothing on this conditional distribution
- But here's a better way interpolate a unigram and a bigram:

$$P_{\text{li}}(w_k | w_{k-1}) = \lambda P_{\text{uni}}(w_k) + (1-\lambda)P_{\text{bi}}(w_k | w_{k-1})$$
  

$$P_{\text{bi}}(w_k | w_{k-1}) = C(w_{k-1}, w_k) / C(w_{k-1})$$

# All the important fine points

- Note that we have several probability distributions for words
  - Keep them straight!
- You might want/need to work with log probabilities:
  - $\log P(w_1...w_n) = \log P(w_1) + \log P(w_2|w_1) + ... + \log P(w_n|w_{n-1})$ 
    - Otherwise, be very careful about floating point underflow
- Our query may be words anywhere in a document
  - We'll start the bigram estimate of a sequence with a unigram estimate
  - Often, people instead condition on a start-of-sequence symbol, but not good here
  - Because of this, the unigram and bigram counts have different totals – not a problem

### Using a bigram language model

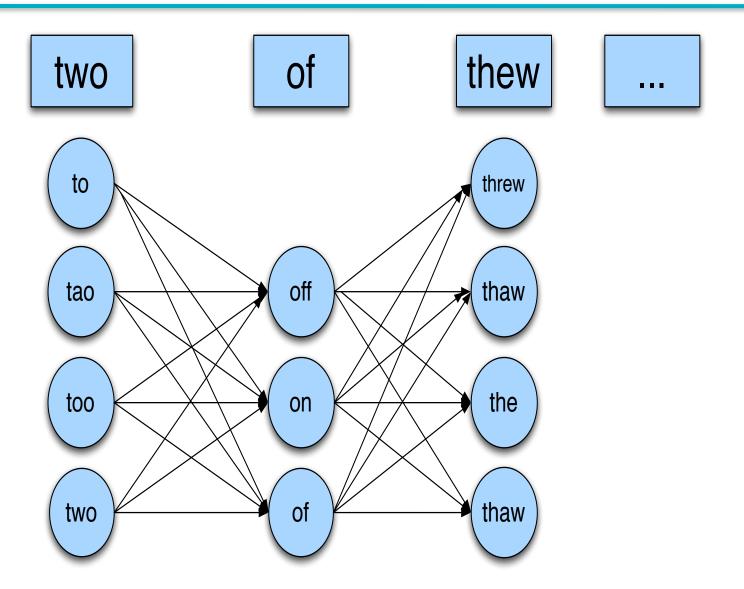
- "a stellar and versatile acress whose combination of sass and glamour..."
- Counts from the Corpus of Contemporary American English with add-1 smoothing
- P(actress versatile)=.000021 P(whose actress) = .0010
- P(across | versatile) =.000021 P(whose | across) = .000006
- P("versatile actress whose") = .000021\*.0010 = 210 x10<sup>-10</sup>
- P("versatile across whose") = .000021\*.000006 = 1 x10<sup>-10</sup>

### Using a bigram language model

- "a stellar and versatile acress whose combination of sass and glamour..."
- Counts from the Corpus of Contemporary American English with add-1 smoothing
- P(actress | versatile)=.000021 P(whose | actress) = .0010
- P(across|versatile) =.000021 P(whose|across) = .000006
- P("versatile actress whose") = .000021\*.0010 = 210 x10<sup>-10</sup>
- P("versatile across whose") = .000021\*.000006 = 1 x10<sup>-10</sup>

Introduction to Information Retrieval

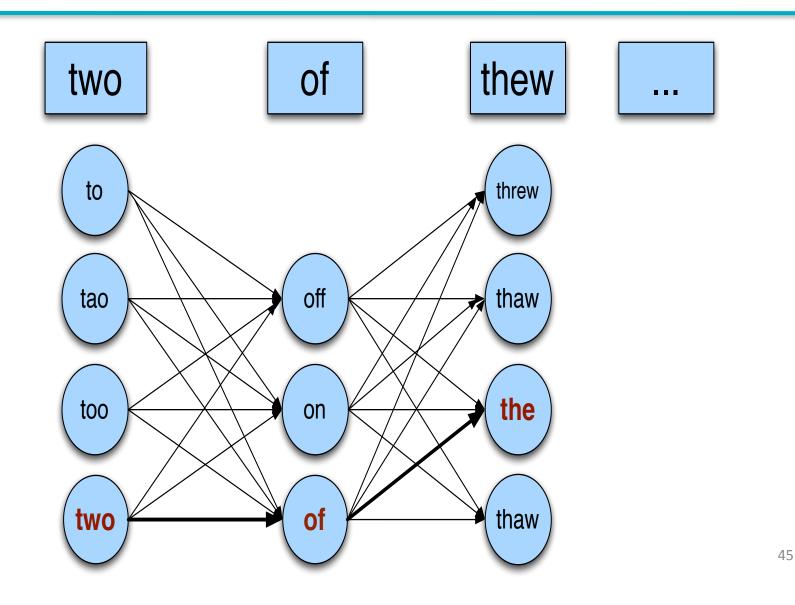
# Noisy channel for real-word spell correction



44

Introduction to Information Retrieval

# Noisy channel for real-word spell correction



### Simplification: One error per sentence

- Out of all possible sentences with one word replaced
  - $w_1, w''_2, w_3, w_4$  two off thew
  - $w_1, w_2, w_3, w_4$  two of the
  - $w''_1, w_2, w_3, w_4$  too of thew
  - •
- Choose the sequence W that maximizes P(W)

## Where to get the probabilities

- Language model
  - Unigram
  - Bigram
  - etc.
- Channel model
  - Same as for non-word spelling correction
  - Plus need probability for no error, P(w/w)

# Probability of no error

- What is the channel probability for a correctly typed word?
- P("the" | "the")
  - If you have a big corpus, you can estimate this percent correct
- But this value depends strongly on the application
  - .90 (1 error in 10 words)
  - .95 (1 error in 20 words)
  - .99 (1 error in 100 words)

### Peter Norvig's "thew" example

| X    | W     | x w       | P(x w)   | P(w)      | 10 <sup>9</sup> P(x  <br>w)P(w) |
|------|-------|-----------|----------|-----------|---------------------------------|
| thew | the   | ew e      | 0.000007 |           | 144                             |
| thew | thew  |           | 0.95     | 0.0000009 | 90                              |
| thew | thaw  | e a       | 0.001    | 0.000007  | 0.7                             |
| thew | threw | h hr      | 0.00008  | 0.000004  | 0.03                            |
| thew | thwe  | ew <br>we | 0.00003  | 0.0000004 | 0.0001                          |

## State of the art noisy channel

- We never just multiply the prior and the error model
- Independence assumptions→probabilities not commensurate
- Instead: Weight them

$$\hat{w} = \operatorname*{argmax}_{w \in V} P(x \mid w) P(w)^{\lambda}$$

Learn λ from a development test set

### Improvements to channel model

- Allow richer edits (Brill and Moore 2000)
  - ∎ ent→ant
  - ∎ ph→f
  - ∎ le→al
- Incorporate pronunciation into channel (Toutanova and Moore 2002)
- Incorporate device into channel
  - Not all Android phones need have the same error model
  - But spell correction may be done at the system level