Experiences with MapReduce, an Abstraction for Large-Scale Computation

Jeff Dean Google, Inc.

Problem: lots of data

- Example: 20+ billion web pages x 20KB = 400+ terabytes
- One computer can read 30-35 MB/sec from disk
 - ~four months to read the web
- ~1,000 hard drives just to store the web
- Even more to do something with the data

Solution: spread the work over many machines

- Good news: same problem with 1000 machines, < 3 hours
- Bad news: programming work
 - communication and coordination
 - recovering from machine failure
 - status reporting
 - debugging
 - optimization
 - locality
- Bad news II: repeat for every problem you want to solve

MapReduce

- A simple programming model that applies to many large-scale computing problems
- Hide messy details in MapReduce runtime library:
 - automatic parallelization
 - load balancing
 - network and disk transfer optimization
 - handling of machine failures
 - robustness
 - improvements to core library benefit all users of library!

Typical problem solved by MapReduce

- Read a lot of data
- Map: extract something you care about from each record
- Shuffle and Sort
- Reduce: aggregate, summarize, filter, or transform
- Write the results

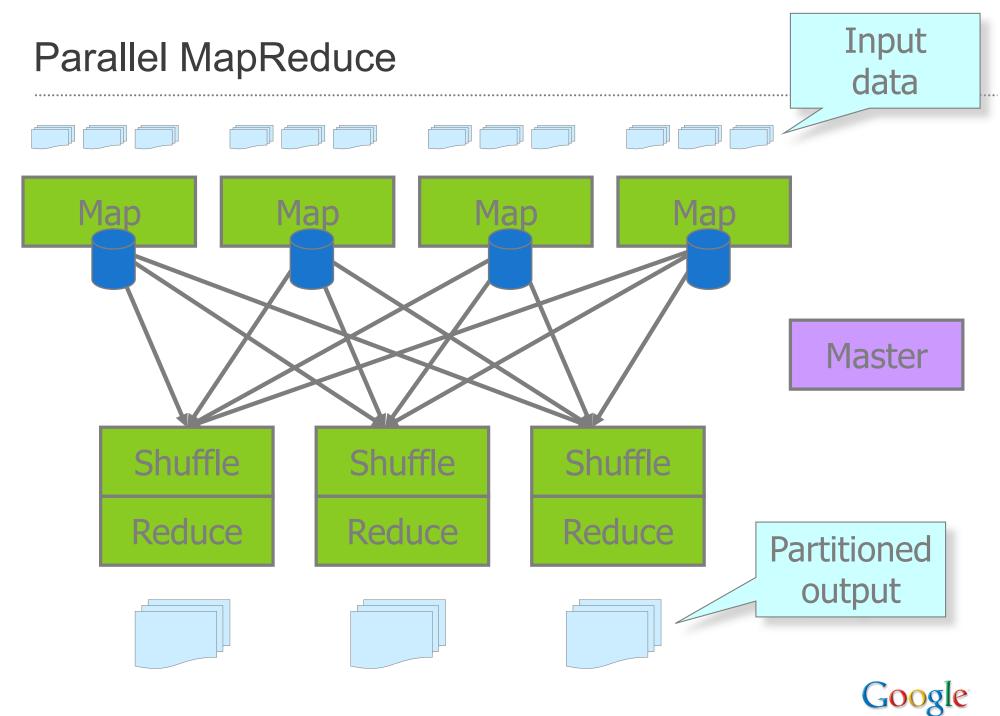
Outline stays the same, map and reduce change to fit the problem

More specifically...

- Programmer specifies two primary methods:
 - map(k, v) \rightarrow <k', v'>*
 - reduce(k', $\langle v' \rangle^*$) $\rightarrow \langle k', v'' \rangle^*$
- All v' with same k' are reduced together, in order.
- Usually also specify:
 - partition(k', total partitions) -> partition for k'
 - often a simple hash of the key
 - allows reduce operations for different k' to be parallelized

MapReduce: Scheduling

- One master, many workers
 - Input data split into *M* map tasks (typically 64 MB in size)
 - Reduce phase partitioned into *R* reduce tasks
 - Tasks are assigned to workers dynamically
 - Often: M=200,000; R=4,000; workers=2,000
- Master assigns each map task to a free worker
 - Considers locality of data to worker when assigning task
 - Worker reads task input (often from local disk!)
 - Worker produces R **local files** containing intermediate k/v pairs
- Master assigns each reduce task to a free worker
 - Worker reads intermediate k/v pairs from map workers
 - Worker sorts & applies user's *Reduce* op to produce the output



Task Granularity and Pipelining

- Fine granularity tasks: many more map tasks than machines
 - Minimizes time for fault recovery
 - Can pipeline shuffling with map execution
 - Better dynamic load balancing
- Often use 200,000 map/5000 reduce tasks w/ 2000 machines

Process	Time>										
User Program	MapReduce()				wait						
Master	Assign tasks to worker machines										
Worker 1		Map 1	Map 3								
Worker 2		Map 2									
Worker 3			Read 1.1		Read 1.3		Read 1.2		Redu	ice 1	
Worker 4			Read 2.1				Read 2.2	Rea	d 2.3	Red	uce 2

Conclusion

- MapReduce has proven to be a remarkably-useful abstraction
- Greatly simplifies large-scale computations at Google
- Fun to use: focus on problem, let library deal with messy details
 - Many thousands of parallel programs written by hundreds of different programmers in last few years
 - Many had no prior parallel or distributed programming experience

Further info:

MapReduce: Simplified Data Processing on Large Clusters, Jeffrey Dean and Sanjay Ghemawat, OSDI' 04

http://labs.google.com/papers/mapreduce.html

(or search Google for [MapReduce])

