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Today’s	lecture
§Web	Crawling
§ (Near)	duplicate	detection
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Basic	crawler	operation
§ Begin	with	known	“seed” URLs
§ Fetch	and	parse	them

§ Extract	URLs	they	point	to
§ Place	the	extracted	URLs	on	a	queue

§ Fetch	each	URL	on	the	queue	and	
repeat

Sec. 20.2
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Sec. 20.2
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Simple	picture	– complications
§ Web	crawling	isn’t	feasible	with	one	machine

§ All	of	the	above	steps	distributed
§ Malicious	pages

§ Spam	pages	
§ Spider	traps	– incl	dynamically	generated

§ Even	non-malicious	pages	pose	challenges
§ Latency/bandwidth	to	remote	servers	vary
§ Webmasters’ stipulations

§ How	“deep” should	you	crawl	a	site’s	URL	hierarchy?
§ Site	mirrors	and	duplicate	pages

§ Politeness	– don’t	hit	a	server	too	often

Sec. 20.1.1
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What	any	crawler	must do
§ Be	Robust:	Be	immune	to	spider	traps	and	
other	malicious	behavior	from	web	servers

§ Be	Polite:	Respect	implicit	and	explicit	
politeness	considerations

Sec. 20.1.1
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Explicit	and	implicit	politeness
§ Explicit	politeness:	specifications	from	
webmasters	on	what	portions	of	site	can	be	
crawled
§ robots.txt

§ Implicit	politeness:	even	with	no	
specification,	avoid	hitting	any	site	too	
often

Sec. 20.2
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Robots.txt
§ Protocol	for	giving	spiders	(“robots”)	limited	
access	to	a	website,	originally	from	1994
§ www.robotstxt.org/robotstxt.html

§ Website	announces	its	request	on	what	can(not)	
be	crawled
§ For	a	server,	create	a	file	/robots.txt
§ This	file	specifies	access	restrictions

Sec. 20.2.1
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Robots.txt	example
§ No	robot	should	visit	any	URL	starting	with	
"/yoursite/temp/",	except	the	robot	called	
“searchengine":	

User-agent: *

Disallow: /yoursite/temp/ 

User-agent: searchengine

Disallow:

Sec. 20.2.1
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What	any	crawler	should do
§ Be	capable	of	distributed operation:	designed	to	
run	on	multiple	distributed	machines

§ Be	scalable:	designed	to	increase	the	crawl	rate	
by	adding	more	machines

§ Performance/efficiency:	permit	full	use	of	
available	processing	and	network	resources

Sec. 20.1.1
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What	any	crawler	should do

§ Fetch	pages	of	“higher	quality” first
§ Continuous operation:	Continue	fetching	
fresh	copies	of	a	previously	fetched	page

§ Extensible:	Adapt	to	new	data	formats,	
protocols

Sec. 20.1.1
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URL	frontier
§ Can	include	multiple	pages	from	the	same	
host

§ Must	avoid	trying	to	fetch	them	all	at	the	
same	time

§ Must	try	to	keep	all	crawling	threads	busy

Sec. 20.2
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Processing	steps	in	crawling
§ Pick	a	URL	from	the	frontier
§ Fetch	the	document	at	the	URL
§ Parse	the	URL

§ Extract	links	from	it	to	other	docs	(URLs)
§ Check	if	URL	has	content	already	seen

§ If	not,	add	to	indexes
§ For	each	extracted	URL

§ Ensure	it	passes	certain	URL	filter	tests
§ Check	if	it	is	already	in	the	frontier	(duplicate	URL	
elimination)

E.g., only crawl .edu, 
obey robots.txt, etc.

Which one?

Sec. 20.2.1
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Basic	crawl	architecture
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Sec. 20.2.1
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DNS	(Domain	Name	Server)
§ A	lookup	service	on	the	internet

§ Given	a	URL,	retrieve	its	IP	address
§ Service	provided	by	a	distributed	set	of	servers	– thus,	
lookup	latencies	can	be	high	(even	seconds)

§ Common	OS	implementations	of	DNS	lookup	are	
blocking:	only	one	outstanding	request	at	a	time

§ Solutions
§ DNS	caching
§ Batch	DNS	resolver	– collects	requests	and	sends	them	out	
together

Sec. 20.2.2
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Parsing:	URL	normalization

§ When	a	fetched	document	is	parsed,	some	of	the	
extracted	links	are	relative URLs

§ E.g.,	http://en.wikipedia.org/wiki/Main_Page has	a	
relative	link	to	/wiki/Wikipedia:General_disclaimer	
which	is	the	same	as	the	absolute	URL	
http://en.wikipedia.org/wiki/Wikipedia:General_disclaimer

§ During	parsing,	must	normalize	(expand)	such	relative	
URLs

Sec. 20.2.1
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Content	seen?
§ Duplication	is	widespread	on	the	web
§ If	the	page	just	fetched	is	already	in	
the	index,	do	not	further	process	it

§ This	is	verified	using	document	
fingerprints	or	shingles
§ Second	part	of	this	lecture

Sec. 20.2.1
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Filters	and	robots.txt	

§ Filters – regular	expressions	for	URLs	to	
be	crawled/not

§ Once	a	robots.txt	file	is	fetched	from	a	
site,	need	not	fetch	it	repeatedly
§ Doing	so	burns	bandwidth,	hits	web	
server

§ Cache	robots.txt	files

Sec. 20.2.1
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Duplicate	URL	elimination
§ For	a	non-continuous	(one-shot)	crawl,	test	
to	see	if	an	extracted+filtered	URL	has	
already	been	passed	to	the	frontier

§ For	a	continuous	crawl	– see	details	of	
frontier	implementation

Sec. 20.2.1
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Distributing	the	crawler
§ Run	multiple	crawl	threads,	under	different	
processes	– potentially	at	different	nodes
§ Geographically	distributed	nodes

§ Partition	hosts	being	crawled	into	nodes
§ Hash	used	for	partition

§ How	do	these	nodes	communicate	and	share	
URLs?

Sec. 20.2.1
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Communication	between	nodes
§ Output	of	the	URL	filter	at	each	node	is	sent	to	the	
Dup	URL	Eliminator	of	the	appropriate	node
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Sec. 20.2.1
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URL	frontier:	two	main	considerations

§ Politeness:	do	not	hit	a	web	server	too	frequently
§ Freshness:	crawl	some	pages	more	often	than	
others
§ E.g.,	pages	(such	as	News	sites)	whose	content	
changes	often

These	goals	may	conflict	with	each	other.
(E.g.,	simple	priority	queue	fails	– many	links	out	of	
a	page	go	to	its	own	site,	creating	a	burst	of	
accesses	to	that	site.)

Sec. 20.2.3
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Politeness	– challenges
§ Even	if	we	restrict	only	one	thread	to	fetch	
from	a	host,	can	hit	it	repeatedly

§ Common	heuristic:	insert	time	gap	between	
successive	requests	to	a	host	that	is	>>	time	
for	most	recent	fetch	from	that	host

Sec. 20.2.3
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Back queue selector

B back queues
Single host on each

Crawl thread requesting URL

URL	frontier:	Mercator	scheme

Biased front queue selector
Back queue router

Prioritizer

K front queues

URLs

Sec. 20.2.3
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Mercator	URL	frontier
§ URLs	flow	in	from	the	top	into	the	frontier
§ Front	queues manage	prioritization
§ Back	queues enforce	politeness
§ Each	queue	is	FIFO

Sec. 20.2.3
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Front	queues

Prioritizer

1 K

Biased front queue selector
Back queue router

Sec. 20.2.3
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Front	queues
§ Prioritizer	assigns	to	URL	an	integer	priority	
between	1	and	K
§ Appends	URL	to	corresponding	queue

§ Heuristics	for	assigning	priority
§ Refresh	rate	sampled	from	previous	crawls
§ Application-specific	(e.g.,	“crawl	news	sites	more	
often”)

Sec. 20.2.3
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Biased	front	queue	selector
§ When	a	back	queue requests	a	URL	(in	a	
sequence	to	be	described):	picks	a	front	queue
from	which	to	pull	a	URL

§ This	choice	can	be	round	robin	biased	to	queues	
of	higher	priority,	or	some	more	sophisticated	
variant
§ Can	be	randomized

Sec. 20.2.3
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Back	queues
Biased front queue selector

Back queue router

Back queue selector

1 B

Heap

Sec. 20.2.3
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Back	queue	invariants

§ Each	back	queue	is	kept	non-empty	while	the	
crawl	is	in	progress

§ Each	back	queue	only	contains	URLs	from	a	
single	host
§ Maintain	a	table	from	hosts	to	back	queues

Host name Back queue

… 3

1

B

Sec. 20.2.3
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Back	queue	heap
§ One	entry	for	each	back	queue
§ The	entry	is	the	earliest	time	te at	which	the	host	
corresponding	to	the	back	queue	can	be	hit	again

§ This	earliest	time	is	determined	from
§ Last	access	to	that	host
§ Any	time	buffer	heuristic	we	choose

Sec. 20.2.3
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Back	queue	processing

§ A	crawler	thread	seeking	a	URL	to	crawl:
§ Extracts	the	root	of	the	heap
§ Fetches	URL	at	head	of	corresponding	back	queue	q
(look	up	from	table)

§ Checks	if	queue	q is	now	empty	– if	so,	pulls	a	URL	v
from	front	queues
§ If	there’s	already	a	back	queue	for	v’s	host,	append	v to	it	
and	pull	another	URL	from	front	queues,	repeat

§ Else	add	v to	q
§ When	q is	non-empty,	create	heap	entry	for	it

Sec. 20.2.3
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Number	of	back	queues	B
§ Keep	all	threads	busy	while	respecting	politeness
§ Mercator	recommendation:	three	times	as	many	
back	queues	as	crawler	threads

Sec. 20.2.3
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Near	duplicate	
document	detection
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Duplicate	documents
§ The	web	is	full	of	duplicated	content
§ Strict	duplicate	detection	=	exact	match

§ Not	as	common
§ But	many,	many	cases	of	near	duplicates

§ E.g.,	Last	modified	date	the	only	difference	
between	two	copies	of	a	page

Sec. 19.6
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Duplicate/Near-Duplicate	Detection

§ Duplication:	Exact	match		can	be	detected	with	
fingerprints

§ Near-Duplication:	Approximate	match
§ Overview

§ Compute	syntactic	similarity	with	an	edit-distance	
measure

§ Use	similarity	threshold	to	detect	near-duplicates
§ E.g.,		Similarity	>	80%	=>	Documents	are	“near	duplicates”
§ Not	transitive	though	sometimes	used	transitively

Sec. 19.6 Introduction	to	Information	Retrieval

Computing	Similarity
§ Features:

§ Segments	of	a	document	(natural	or	artificial	breakpoints)
§ Shingles (Word	N-Grams)
§ a	rose	is	a	rose	is	a	rose→	4-grams	are

a_rose_is_a
rose_is_a_rose

is_a_rose_is	
a_rose_is_a

§ Similarity	Measure	between	two	docs	(=	sets	of	shingles)
§ Jaccard	cooefficient:	(Size_of_Intersection	/	Size_of_Union)

Sec. 19.6
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Shingles	+	Set	Intersection
§ Computing	exact set	intersection	of	shingles	
between	all pairs	of	documents	is	expensive

§Approximate	using	a	cleverly	chosen	subset	of	
shingles	from	each	(a	sketch)
§ Estimate	(size_of_intersection	/	size_of_union)
based	on	a	short	sketch	

Doc 
A

Shingle set A Sketch A

Doc 
B

Shingle set B Sketch B

Jaccard

Sec. 19.6 Introduction	to	Information	Retrieval

Sketch	of	a	document
§ Create	a	“sketch	vector” (of	size	~200)	for	
each	document
§ Documents	that	share	≥ t (say	80%)	
corresponding	vector	elements	are	deemed	
near	duplicates

§ For	doc	D,	sketchD[	i	]	is	as	follows:
§ Let	f	map	all	shingles	in	the	universe	to	1..2m
(e.g.,	f	=	fingerprinting)

§ Let	pi be	a	random	permutation on	1..2m

§ Pick	MIN	{pi(f(s))}		over	all	shingles	s in	D

Sec. 19.6
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Computing	Sketch[i]	for	Doc1

Document 1

264

264

264

264

Start with 64-bit f(shingles)

Permute on the number line

with pi

Pick the min value

Sec. 19.6 Introduction	to	Information	Retrieval

Test	if	Doc1.Sketch[i]	=	Doc2.Sketch[i]	

Document 1 Document 2

264

264

264

264

264

264

264

264

Are these equal?

Test for 200 random permutations: p1, p2,… p200

A B

Sec. 19.6
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However…

Document 1 Document 2

264

264

264

264

264

264

264

264

A = B iff the shingle with the MIN value in the union of 
Doc1 and Doc2 is common to both (i.e., lies in the 
intersection)

Claim: This happens with probability
Size_of_intersection / Size_of_union

BA

Why?

Sec. 19.6 Introduction	to	Information	Retrieval

Set	Similarity	of	sets	Ci ,	Cj

§ View sets as columns of a matrix A; one row for each 
element in the universe.  aij = 1 indicates presence of 
item i  in set j

§ Example

ji

ji
ji CC

CC
)C,Jaccard(C

!

"
=

C1 C2

0     1
1    0
1    1        Jaccard(C1,C2) = 2/5 = 0.4
0    0
1    1
0    1

Sec. 19.6

Introduction	to	Information	Retrieval

Key	Observation
§ For	columns	Ci,	Cj, four	types	of	rows

Ci Cj
A 1 1
B 1 0
C 0 1
D 0 0

§ Overload	notation: A	=	#	of	rows	of	type	A
§ Claim

CBA
A)C,Jaccard(C ji ++

=

Sec. 19.6 Introduction	to	Information	Retrieval

“Min” Hashing

§ Randomly permute rows
§ Hash h(Ci) = index of first row with 1 in column 

Ci
§ Surprising Property

§ Why?
§ Both are A/(A+B+C)
§ Look down columns Ci, Cj until first non-Type-D row
§ h(Ci) = h(Cj) ßà type A row

[ ] ( )jiji C,CJaccard )h(C)h(C  P ==

Sec. 19.6
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Random	permutations
§ Random	permutations	are	expensive	to	compute

§ Linear	permutations	work	well	in	practice
§ For	a	large	prime	p,	consider	permutations	over	{0, …, p – 1}	
drawn	from	the	set:

Fp =	{pa,b :	1≤ a ≤ p – 1, 0 ≤ b ≤ p – 1} where

pa,b(x) = ax + b mod p

47
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Final	notes
§ Shingling	is	a	randomized	algorithm

§ Our	analysis	did	not	presume	any	probability	model	on	the	
inputs

§ It	will	give	us	the	right	(wrong)	answer	with	some	
probability	on	any	input

§ We’ve	described	how	to	detect	near	duplication	in	a	
pair	of	documents

§ In	“real	life” we’ll	have	to	concurrently	look	at	many	
pairs
§ See	text	book	for	details
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