
1

Introduction	to	Information	Retrieval

Introduction	to

Information	Retrieval

CS276
Information	Retrieval	and	Web	Search

Chris	Manning	and	Pandu	Nayak
Crawling	and	Duplicates

Introduction	to	Information	Retrieval

Today’s	lecture
§Web	Crawling
§ (Near)	duplicate	detection

2

Introduction	to	Information	Retrieval

Basic	crawler	operation
§ Begin	with	known	“seed” URLs
§ Fetch	and	parse	them

§ Extract	URLs	they	point	to
§ Place	the	extracted	URLs	on	a	queue

§ Fetch	each	URL	on	the	queue	and	
repeat

Sec. 20.2

3

Introduction	to	Information	Retrieval

Crawling	picture

Web

URLs frontier

Unseen Web

Seed
pages

URLs crawled
and parsed

Sec. 20.2

4

Introduction	to	Information	Retrieval

Simple	picture	– complications
§ Web	crawling	isn’t	feasible	with	one	machine

§ All	of	the	above	steps	distributed
§ Malicious	pages

§ Spam	pages	
§ Spider	traps	– incl	dynamically	generated

§ Even	non-malicious	pages	pose	challenges
§ Latency/bandwidth	to	remote	servers	vary
§ Webmasters’ stipulations

§ How	“deep” should	you	crawl	a	site’s	URL	hierarchy?
§ Site	mirrors	and	duplicate	pages

§ Politeness	– don’t	hit	a	server	too	often

Sec. 20.1.1

5

Introduction	to	Information	Retrieval

What	any	crawler	must do
§ Be	Robust:	Be	immune	to	spider	traps	and	
other	malicious	behavior	from	web	servers

§ Be	Polite:	Respect	implicit	and	explicit	
politeness	considerations

Sec. 20.1.1

6

2

Introduction	to	Information	Retrieval

Explicit	and	implicit	politeness
§ Explicit	politeness:	specifications	from	
webmasters	on	what	portions	of	site	can	be	
crawled
§ robots.txt

§ Implicit	politeness:	even	with	no	
specification,	avoid	hitting	any	site	too	
often

Sec. 20.2

7

Introduction	to	Information	Retrieval

Robots.txt
§ Protocol	for	giving	spiders	(“robots”)	limited	
access	to	a	website,	originally	from	1994
§ www.robotstxt.org/robotstxt.html

§ Website	announces	its	request	on	what	can(not)	
be	crawled
§ For	a	server,	create	a	file	/robots.txt
§ This	file	specifies	access	restrictions

Sec. 20.2.1

8

Introduction	to	Information	Retrieval

Robots.txt	example
§ No	robot	should	visit	any	URL	starting	with	
"/yoursite/temp/",	except	the	robot	called	
“searchengine":	

User-agent: *

Disallow: /yoursite/temp/

User-agent: searchengine

Disallow:

Sec. 20.2.1

9

Introduction	to	Information	Retrieval

What	any	crawler	should do
§ Be	capable	of	distributed operation:	designed	to	
run	on	multiple	distributed	machines

§ Be	scalable:	designed	to	increase	the	crawl	rate	
by	adding	more	machines

§ Performance/efficiency:	permit	full	use	of	
available	processing	and	network	resources

Sec. 20.1.1

10

Introduction	to	Information	Retrieval

What	any	crawler	should do

§ Fetch	pages	of	“higher	quality” first
§ Continuous operation:	Continue	fetching	
fresh	copies	of	a	previously	fetched	page

§ Extensible:	Adapt	to	new	data	formats,	
protocols

Sec. 20.1.1

11

Introduction	to	Information	Retrieval

Updated	crawling	picture

URLs crawled
and parsed

Unseen Web

Seed
Pages

URL frontier

Crawling thread

Sec. 20.1.1

12

3

Introduction	to	Information	Retrieval

URL	frontier
§ Can	include	multiple	pages	from	the	same	
host

§ Must	avoid	trying	to	fetch	them	all	at	the	
same	time

§ Must	try	to	keep	all	crawling	threads	busy

Sec. 20.2

13

Introduction	to	Information	Retrieval

Processing	steps	in	crawling
§ Pick	a	URL	from	the	frontier
§ Fetch	the	document	at	the	URL
§ Parse	the	URL

§ Extract	links	from	it	to	other	docs	(URLs)
§ Check	if	URL	has	content	already	seen

§ If	not,	add	to	indexes
§ For	each	extracted	URL

§ Ensure	it	passes	certain	URL	filter	tests
§ Check	if	it	is	already	in	the	frontier	(duplicate	URL	
elimination)

E.g., only crawl .edu,
obey robots.txt, etc.

Which one?

Sec. 20.2.1

14

Introduction	to	Information	Retrieval

Basic	crawl	architecture

WWW

DNS

Parse

Content
seen?

Doc
FP’s

Dup
URL
elim

URL
set

URL Frontier

URL
filter

robots
filters

Fetch

Sec. 20.2.1

15

Introduction	to	Information	Retrieval

DNS	(Domain	Name	Server)
§ A	lookup	service	on	the	internet

§ Given	a	URL,	retrieve	its	IP	address
§ Service	provided	by	a	distributed	set	of	servers	– thus,	
lookup	latencies	can	be	high	(even	seconds)

§ Common	OS	implementations	of	DNS	lookup	are	
blocking:	only	one	outstanding	request	at	a	time

§ Solutions
§ DNS	caching
§ Batch	DNS	resolver	– collects	requests	and	sends	them	out	
together

Sec. 20.2.2

16

Introduction	to	Information	Retrieval

Parsing:	URL	normalization

§ When	a	fetched	document	is	parsed,	some	of	the	
extracted	links	are	relative URLs

§ E.g.,	http://en.wikipedia.org/wiki/Main_Page has	a	
relative	link	to	/wiki/Wikipedia:General_disclaimer	
which	is	the	same	as	the	absolute	URL	
http://en.wikipedia.org/wiki/Wikipedia:General_disclaimer

§ During	parsing,	must	normalize	(expand)	such	relative	
URLs

Sec. 20.2.1

17

Introduction	to	Information	Retrieval

Content	seen?
§ Duplication	is	widespread	on	the	web
§ If	the	page	just	fetched	is	already	in	
the	index,	do	not	further	process	it

§ This	is	verified	using	document	
fingerprints	or	shingles
§ Second	part	of	this	lecture

Sec. 20.2.1

18

4

Introduction	to	Information	Retrieval

Filters	and	robots.txt	

§ Filters – regular	expressions	for	URLs	to	
be	crawled/not

§ Once	a	robots.txt	file	is	fetched	from	a	
site,	need	not	fetch	it	repeatedly
§ Doing	so	burns	bandwidth,	hits	web	
server

§ Cache	robots.txt	files

Sec. 20.2.1

19

Introduction	to	Information	Retrieval

Duplicate	URL	elimination
§ For	a	non-continuous	(one-shot)	crawl,	test	
to	see	if	an	extracted+filtered	URL	has	
already	been	passed	to	the	frontier

§ For	a	continuous	crawl	– see	details	of	
frontier	implementation

Sec. 20.2.1

20

Introduction	to	Information	Retrieval

Distributing	the	crawler
§ Run	multiple	crawl	threads,	under	different	
processes	– potentially	at	different	nodes
§ Geographically	distributed	nodes

§ Partition	hosts	being	crawled	into	nodes
§ Hash	used	for	partition

§ How	do	these	nodes	communicate	and	share	
URLs?

Sec. 20.2.1

21

Introduction	to	Information	Retrieval

Communication	between	nodes
§ Output	of	the	URL	filter	at	each	node	is	sent	to	the	
Dup	URL	Eliminator	of	the	appropriate	node

WWW

Fetch

DNS

Parse

Content
seen?

URL
filter

Dup
URL
elim

Doc
FP’s

URL
set

URL Frontier

robots
filters

Host
splitter

To
other
nodes

From
other
nodes

Sec. 20.2.1

22

Introduction	to	Information	Retrieval

URL	frontier:	two	main	considerations

§ Politeness:	do	not	hit	a	web	server	too	frequently
§ Freshness:	crawl	some	pages	more	often	than	
others
§ E.g.,	pages	(such	as	News	sites)	whose	content	
changes	often

These	goals	may	conflict	with	each	other.
(E.g.,	simple	priority	queue	fails	– many	links	out	of	
a	page	go	to	its	own	site,	creating	a	burst	of	
accesses	to	that	site.)

Sec. 20.2.3

23

Introduction	to	Information	Retrieval

Politeness	– challenges
§ Even	if	we	restrict	only	one	thread	to	fetch	
from	a	host,	can	hit	it	repeatedly

§ Common	heuristic:	insert	time	gap	between	
successive	requests	to	a	host	that	is	>>	time	
for	most	recent	fetch	from	that	host

Sec. 20.2.3

24

5

Introduction	to	Information	Retrieval

Back queue selector

B back queues
Single host on each

Crawl thread requesting URL

URL	frontier:	Mercator	scheme

Biased front queue selector
Back queue router

Prioritizer

K front queues

URLs

Sec. 20.2.3

25

Introduction	to	Information	Retrieval

Mercator	URL	frontier
§ URLs	flow	in	from	the	top	into	the	frontier
§ Front	queues manage	prioritization
§ Back	queues enforce	politeness
§ Each	queue	is	FIFO

Sec. 20.2.3

26

Introduction	to	Information	Retrieval

Front	queues

Prioritizer

1 K

Biased front queue selector
Back queue router

Sec. 20.2.3

27

Introduction	to	Information	Retrieval

Front	queues
§ Prioritizer	assigns	to	URL	an	integer	priority	
between	1	and	K
§ Appends	URL	to	corresponding	queue

§ Heuristics	for	assigning	priority
§ Refresh	rate	sampled	from	previous	crawls
§ Application-specific	(e.g.,	“crawl	news	sites	more	
often”)

Sec. 20.2.3

28

Introduction	to	Information	Retrieval

Biased	front	queue	selector
§ When	a	back	queue requests	a	URL	(in	a	
sequence	to	be	described):	picks	a	front	queue
from	which	to	pull	a	URL

§ This	choice	can	be	round	robin	biased	to	queues	
of	higher	priority,	or	some	more	sophisticated	
variant
§ Can	be	randomized

Sec. 20.2.3

29

Introduction	to	Information	Retrieval

Back	queues
Biased front queue selector

Back queue router

Back queue selector

1 B

Heap

Sec. 20.2.3

30

6

Introduction	to	Information	Retrieval

Back	queue	invariants

§ Each	back	queue	is	kept	non-empty	while	the	
crawl	is	in	progress

§ Each	back	queue	only	contains	URLs	from	a	
single	host
§ Maintain	a	table	from	hosts	to	back	queues

Host name Back queue

… 3

1

B

Sec. 20.2.3

31

Introduction	to	Information	Retrieval

Back	queue	heap
§ One	entry	for	each	back	queue
§ The	entry	is	the	earliest	time	te at	which	the	host	
corresponding	to	the	back	queue	can	be	hit	again

§ This	earliest	time	is	determined	from
§ Last	access	to	that	host
§ Any	time	buffer	heuristic	we	choose

Sec. 20.2.3

32

Introduction	to	Information	Retrieval

Back	queue	processing

§ A	crawler	thread	seeking	a	URL	to	crawl:
§ Extracts	the	root	of	the	heap
§ Fetches	URL	at	head	of	corresponding	back	queue	q
(look	up	from	table)

§ Checks	if	queue	q is	now	empty	– if	so,	pulls	a	URL	v
from	front	queues
§ If	there’s	already	a	back	queue	for	v’s	host,	append	v to	it	
and	pull	another	URL	from	front	queues,	repeat

§ Else	add	v to	q
§ When	q is	non-empty,	create	heap	entry	for	it

Sec. 20.2.3

33

Introduction	to	Information	Retrieval

Number	of	back	queues	B
§ Keep	all	threads	busy	while	respecting	politeness
§ Mercator	recommendation:	three	times	as	many	
back	queues	as	crawler	threads

Sec. 20.2.3

34

Introduction	to	Information	Retrieval

Introduction	to

Information	Retrieval

Near	duplicate	
document	detection

35

Introduction	to	Information	Retrieval

Duplicate	documents
§ The	web	is	full	of	duplicated	content
§ Strict	duplicate	detection	=	exact	match

§ Not	as	common
§ But	many,	many	cases	of	near	duplicates

§ E.g.,	Last	modified	date	the	only	difference	
between	two	copies	of	a	page

Sec. 19.6

7

Introduction	to	Information	Retrieval

Duplicate/Near-Duplicate	Detection

§ Duplication:	Exact	match		can	be	detected	with	
fingerprints

§ Near-Duplication:	Approximate	match
§ Overview

§ Compute	syntactic	similarity	with	an	edit-distance	
measure

§ Use	similarity	threshold	to	detect	near-duplicates
§ E.g.,		Similarity	>	80%	=>	Documents	are	“near	duplicates”
§ Not	transitive	though	sometimes	used	transitively

Sec. 19.6 Introduction	to	Information	Retrieval

Computing	Similarity
§ Features:

§ Segments	of	a	document	(natural	or	artificial	breakpoints)
§ Shingles (Word	N-Grams)
§ a	rose	is	a	rose	is	a	rose→	4-grams	are

a_rose_is_a
rose_is_a_rose

is_a_rose_is	
a_rose_is_a

§ Similarity	Measure	between	two	docs	(=	sets	of	shingles)
§ Jaccard	cooefficient:	(Size_of_Intersection	/	Size_of_Union)

Sec. 19.6

Introduction	to	Information	Retrieval

Shingles	+	Set	Intersection
§ Computing	exact set	intersection	of	shingles	
between	all pairs	of	documents	is	expensive

§Approximate	using	a	cleverly	chosen	subset	of	
shingles	from	each	(a	sketch)
§ Estimate	(size_of_intersection	/	size_of_union)
based	on	a	short	sketch	

Doc
A

Shingle set A Sketch A

Doc
B

Shingle set B Sketch B

Jaccard

Sec. 19.6 Introduction	to	Information	Retrieval

Sketch	of	a	document
§ Create	a	“sketch	vector” (of	size	~200)	for	
each	document
§ Documents	that	share	≥ t (say	80%)	
corresponding	vector	elements	are	deemed	
near	duplicates

§ For	doc	D,	sketchD[i]	is	as	follows:
§ Let	f	map	all	shingles	in	the	universe	to	1..2m
(e.g.,	f	=	fingerprinting)

§ Let	pi be	a	random	permutation on	1..2m

§ Pick	MIN	{pi(f(s))}		over	all	shingles	s in	D

Sec. 19.6

Introduction	to	Information	Retrieval

Computing	Sketch[i]	for	Doc1

Document 1

264

264

264

264

Start with 64-bit f(shingles)

Permute on the number line

with pi

Pick the min value

Sec. 19.6 Introduction	to	Information	Retrieval

Test	if	Doc1.Sketch[i]	=	Doc2.Sketch[i]	

Document 1 Document 2

264

264

264

264

264

264

264

264

Are these equal?

Test for 200 random permutations: p1, p2,… p200

A B

Sec. 19.6

8

Introduction	to	Information	Retrieval

However…

Document 1 Document 2

264

264

264

264

264

264

264

264

A = B iff the shingle with the MIN value in the union of
Doc1 and Doc2 is common to both (i.e., lies in the
intersection)

Claim: This happens with probability
Size_of_intersection / Size_of_union

BA

Why?

Sec. 19.6 Introduction	to	Information	Retrieval

Set	Similarity	of	sets	Ci ,	Cj

§ View sets as columns of a matrix A; one row for each
element in the universe. aij = 1 indicates presence of
item i in set j

§ Example

ji

ji
ji CC

CC
)C,Jaccard(C

!

"
=

C1 C2

0 1
1 0
1 1 Jaccard(C1,C2) = 2/5 = 0.4
0 0
1 1
0 1

Sec. 19.6

Introduction	to	Information	Retrieval

Key	Observation
§ For	columns	Ci,	Cj, four	types	of	rows

Ci Cj
A 1 1
B 1 0
C 0 1
D 0 0

§ Overload	notation: A	=	#	of	rows	of	type	A
§ Claim

CBA
A)C,Jaccard(C ji ++

=

Sec. 19.6 Introduction	to	Information	Retrieval

“Min” Hashing

§ Randomly permute rows
§ Hash h(Ci) = index of first row with 1 in column

Ci
§ Surprising Property

§ Why?
§ Both are A/(A+B+C)
§ Look down columns Ci, Cj until first non-Type-D row
§ h(Ci) = h(Cj) ßà type A row

[] ()jiji C,CJaccard)h(C)h(C P ==

Sec. 19.6

Introduction	to	Information	Retrieval

Random	permutations
§ Random	permutations	are	expensive	to	compute

§ Linear	permutations	work	well	in	practice
§ For	a	large	prime	p,	consider	permutations	over	{0, …, p – 1}	
drawn	from	the	set:

Fp =	{pa,b :	1≤ a ≤ p – 1, 0 ≤ b ≤ p – 1} where

pa,b(x) = ax + b mod p

47

Introduction	to	Information	Retrieval

Final	notes
§ Shingling	is	a	randomized	algorithm

§ Our	analysis	did	not	presume	any	probability	model	on	the	
inputs

§ It	will	give	us	the	right	(wrong)	answer	with	some	
probability	on	any	input

§ We’ve	described	how	to	detect	near	duplication	in	a	
pair	of	documents

§ In	“real	life” we’ll	have	to	concurrently	look	at	many	
pairs
§ See	text	book	for	details

48

