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Matrix-vector multiplication

30 0 0
s=|0 20 o| haseigenvalues 30, 20, 1 with
corresponding eigenvectors

0 0 1
1 0 0
v, =10 v, =1 vy=0
0 0 1

On each eigenvector, S acts as a multiple of the identity
matrix: but as a different multiple on each.

Any vector (say x=

2
4 ]) can be viewed as a combination of

the eigenvectors: | ¢ X=2v;+4v,+ 6V,
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Today’s topic

Latent Semantic Indexing

= Term-document matrices are very large
= But the number of topics that people talk
about is small (in some sense)
= Clothes, movies, politics, ...

= Can we represent the term-document
space by a lower dimensional latent

space?
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Eigenvalues & Eigenvectors

= Eigenvectors (for a square mxm matrix S)

Sv = \v

Example

(right) eigenvector  eigenvalue ("' ;'2) (1’) - (f) - (;)
veR™#0 AeR

= How many eigenvalues are there at most?
Sv=JXAv <= (S=A)v=0
only has a non-zero solution if [S — A\I| =0
This is a mth order equation in A which can have at
most m distinct solutions (roots of the characteristic
polynomial) - can be complex even though S is real.
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Matrix-vector multiplication

= Thus a matrix-vector multiplication such as Sx (S, x as
in the previous slide) can be rewritten in terms of the
eigenvalues/vectors:

Sx=8Q2v, +4v,+6v;)
Sx=28v,+485v, +6Sv,;=2Av, +4A,v, + 64V,
Sx =60v, + 80v, + 6v,

= Even though x is an arbitrary vector, the action of S
on x is determined by the eigenvalues/vectors.
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Matrix-vector multiplication

= Suggestion: the effect of “small” eigenvalues is small.
= |f we ignored the smallest eigenvalue (1), then

instead of
60 we would get 60
6 0

= These vectors are similar (in cosine similarity, etc.)
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Example

S=[21]
1 2

1 2-A
|S-Al|=(2-A4)"-1=0.
= The eigenvalues are 1 and 3 (nonnegative, real).
= The eigenvectors are orthogopal (and real):

[2—ﬂ. 1 }
= Then S-AM = =

1 1 Plug in these values
1 1 and solve for
- eigenvectors.
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Diagonal decomposition: why/how

Let U have the eigenvectors as columns: U=| v .. v,

Then, SU can be written

SU=S| vy . v, |=| Ay, . Ay, [=| v . v,

n n’n

Thus SU=UA, or U-'SU=A

And S=UAU-'.
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Eigenvalues & Eigenvectors

For symmetric matrices, eigenvectors for distinct
eigenvalues are orthogonal

SV =AaoyViays and A = A, = v ¢y, =0
All eigenvalues of a real symmetric matrix are real.

for complex A, if |S—}LI|=0 andS=S"=A1EN

All eigenvalues of acpositive semidefiniteymatrix

are non-negatiye
VYweER"  W'Sw=0, thenif Sv=Av= 2120
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Eigen/diagonal Decomposition

= LetS € R™*™ be a square matrix with m linearly
independent eigenvectors (a “non-defective” matrix)

= Theorem: Exists an eigen decompositio Unique
g [—I giagonaq for

S=UAU""! deiis;i;gt

= (cf. matrix diagonalization theorem) VETES

= Columns of U are the eigenvectors of §

= Diagonal elements of A are eigenvalues of S
A= diag()\l, ey )\m)7 >\z Z Ai+1
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Diagonal decomposition - example

11
-1 1
1/2 -1/2 Recall
/2 1/2 uu' =1.

11 1 0 1/2 -1/2
-1 1 0 3 1/2 1/2

2 1

Recall §= A =LA, =3.

The eigenvectors( 1 jand( 1 )form U=
1 1

Inverting, we have U™’ = [

Then, S=UAU 1=
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Example continued

Let’s divide U (and multiply U-7) by~/2

|2 a2 [1 o} V2 =142
' N2 N2 L0 3] 142 142
Q A @Q'=Q")
|Why.7 Stay tuned ... |
Exercise

= Examine the symmetric eigen decomposition, if any,
for each of the following matrices:

ol [l 23] 2
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Similarity = Clustering

= We can compute the similarity between two
document vector representations x; and x; by xp(jT

= Let X =[x; ... Xy

= Then XXTis a matrix of similarities

= XX is symmetric

= So XXT = Q/\QT

= So we can decompose this similarity space into a set
of orthonormal basis vectors (given in Q) scaled by
the eigenvalues in A

= |f you scale and center the data, this leads to PCA
(Principal Components Analysis)
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Symmetric Eigen Decomposition

= IfS € R™*™is a symmetric matrix:
= Theorem: There exists a (unique) eigen
decomposition S =0AQ"
= where Q is orthogonal:
= Q'=QT
= Columns of Q are normalized eigenvectors
= Columns are orthogonal.

= (everything is real)
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Time out!

= | came to this class to learn about text retrieval and
mining, not to have my linear algebra past dredged
up again ...
= But if you want to dredge, Strang’s Applied Mathematics is
a good place to start.

= What do these matrices have to do with text?

= Recall M x N term-document matrices ...
= But everything so far needs square matrices —so ...
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Singular Value Decomposition

For an M x N matrix A of rank r there exists a
factorization (Singular Value Decomposition = SVD)

foll :
as follows AUSVT

1
[ MxM | MxN] [ Vis NxN ]

(Not proven here.)
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Singular Value Decomposition

A=UzV'

[MxM [ MxN | [ Vis NxN |

= AAT=QAQT
= AAT = (USVT)(UZVT)T = (UZVT)(VZUT) = Uz2UT

The columns of U are orthogonal eigenvectors of AAT.

The columns of V are orthogonal eigenvectors of A7A.

Eigenvalues A, ... A, of AAT are the eigenvalues of ATA.
o=\
Z= diag(al...ar) Singular values
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SVD example

1 -1

Let A= 0 1
10

Thus M=3, N=2. Its SVD is

0 2/J6 143 1o e
UNZ -16 1B || o0 B 1/; ”}}
NN VNS VNN N S SRS

Typically, the singular values arranged in decreasing order.
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Low-rank Approximation

= Solution via SVD
A, =U diag(o,,...,0,,0,...,0) v

set smallest r-k
singular values to zero

* K oKk K K
K ok ok k% * . X Kk ok Kk
* ok ok ok ¥l = |x = . B |
" W
Ay U = [ S ——
VT
k T
Ak = E O.Uv. column notation: sum
[E of rank 1 matrices
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Singular Value Decomposition

= [llustration of SVD dimensions and sparseness

ok x *x * .
ok x| fx ox ox[R % . x x
ok =[x % 0% o [x » «
I EY -
* kK x K ok ‘—;vr—’
A v =
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Low-rank Approximation

= SVD can be used to compute optimal low-rank
approximations.
= Approximation problem: Find A, of rank k such that
Ak = min ||A - X"F <« Frobenius norm

Xcrank(X )=k

A, and X are both mxn matrices.
Typically, want k << r.

Reduced SVD

= |f we retain only k singular values, and set the rest to
0, then we don’t need the matrix parts in color

Then X is kxk, U is Mxk, VT is kxN, and A, is MxN

This is referred to as the reduced SVD

= |tis the convenient (space-saving) and usual form for
computational applications

It’s what Matlab gives you

ok ok x S [ (O
R e . e ———|
* ok ¥k ¥k % R B
——

2 S

pe
z —_—
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Approximation error

= How good (bad) is this approximation?

= |t's the best possible, measured by the Frobenius
norm of the error:

min [4-X], =[4-A], =0

Xcrank(X )=k

where the o, are ordered such that ;= ¢

i+1*

Suggests why Frobenius error drops as k increases.

Introduction to Information Retrieval

Latent Semantic
Indexing via the SVD
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Vector Space Model: Pros

= Automatic selection of index terms

= Partial matching of queries and documents (dealing
with the case where no document contains all search terms)

= Ranking according to similarity score (dealing with large
result sets)

= Term weighting schemes (improves retrieval performance)
= Various extensions

= Document clustering

= Relevance feedback (modifying query vector)
= Geometric foundation
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SVD Low-rank approximation

= Whereas the term-doc matrix A may have M=50000,
N=10 million (and rank close to 50000)

= We can construct an approximation A,,, with rank
100.

= Of all rank 100 matrices, it would have the lowest
Frobenius error.

= Great ... but why would we??
= Answer: Latent Semantic Indexing

C. Eckart, G. Young, The approximation of a matrix by another of lower rank.
Psychometrika, 1, 211-218, 1936.
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What it is

= From term-doc matrix A, we compute the
approximation A,

= There is a row for each term and a column
for each docin A,

= Thus docs live in a space of k<<r dimensions
= These dimensions are not the original axes
= But why?
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Problems with Lexical Semantics

The image cannot be displayed. Your computer may not have enough memory to
opep tl gegor the image may have been corrupted. Restagt your computer,
. An&dﬁty-g\ﬁdsawsgs@twia‘t‘u@nﬁmﬁéﬁtmFél anguage
= Polysemy: Words often have a multitude of
meanings and different types of usage (more

severe in very heterogeneous collections).

= The vector space model is unable to discriminate
between different meanings of the same word.

sim,,.. (d, q)< cos(Z(d, 7))
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Problems with Lexical Semantics

= Synonymy: Different terms may have an
identical or a similar meaning (weaker:
words indicating the same topic).

= No associations between words are
made in the vector space representation.

sim,,..(d, ¢)> cos(£(d, 7))
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Latent Semantic Indexing (LSI)

= Perform a low-rank approximation of document-
term matrix (typical rank 100-300)

= General idea
= Map documents (and terms) to a low-dimensional
representation.
= Design a mapping such that the low-dimensional space
reflects semantic associations (latent semantic space).

= Compute document similarity based on the inner product
in this latent semantic space
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Latent Semantic Analysis

= Latent semantic space: illustrating example

O Doc1

Laptop D
Portable [] Computer [J

O Doc3

Display []

~
c
© S
s 2
g -
5 E
o (=}
@
)

O Doc2

LSI Dimension 1

courtesy of Susan Dumais
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Polysemy and Context

= Document similarity on single word level: polysemy
and context

ring

jupiter
"] space
meaning 1 voyager

saturn

meaning 2

contribution to similarity, if
used in 15t meaning, but not

if in 2
Goals of LSI

= LS| takes documents that are semantically similar (=
talk about the same topics), but are not similar in the
vector space (because they use different words) and
re-represents them in a reduced vector space in
which they have higher similarity.

= Similar terms map to similar location in low
dimensional space

= Noise reduction by dimension reduction
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Performing the maps

= Each row and column of A gets mapped into the k-
dimensional LSI space, by the SVD.

= Claim —this is not only the mapping with the best
(Frobenius error) approximation to A, but in fact
improves retrieval.

= A query g is also mapped into this space, by
q; = ‘ITUkz;l

= Query NOT a sparse vector.
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LSA Example

= Asimple example term-document matrix (binary)
C dl d2 d3 d4 d5 d6
ship 1 0 1 0 0 O
boat (O 1 0 0 0 O
ocecan |1 1 0 0 0 O
wood |1 O O 1 1 O
tree 0 0 0O 1 0 1
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LSA Example

= Example of C = UZV": The matrix £

Y |1 2 3 4 5

2.16 0.00 0.00 0.00 0.00
0.00 159 0.00 0.00 0.00
0.00 0.00 1.28 0.00 0.00
0.00 0.00 0.00 1.00 0.00
0.00 0.00 0.00 0.00 0.39

b W=
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LSA Example: Reducing the dimension

u | 1 2 3 4 5
ship | —0.44 —030 0.00 0.00 0.0
boat | —0.13 —033 0.00 0.00 0.00
ocean | —0.48 —0.51 0.00 0.0 0.00
wood | —0.70 035 0.00 0.0 0.00
tree | —0.26 0.65 0.00 0.00 0.00
1 2 3 4 5

1 216 000 000 000 0.00

2 000 159 000 000 0.00

3 |000 000 000 000 0.00
4
5

0.00 000 0.00 000 0.0

0.00 0.00 0.00 000 0.00
V| & d ds da ds ds
1 [-075 —028 —020 —045 —033 —0.12
2 | -029 -053 019 063 022 041
3
4
5

0.00 000 0.00 000 0.00 0.00
0.00 000 0.00 000 0.00 0.00
0.00 000 0.00 000 0.00 0.00
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LSA Example

= Example of C = UZVT: The matrix U

U 1 2 3 4 5
ship —0.44 —-0.30 0.57 0.58 0.25
boat | —0.13 —-0.33 -0.59 0.00 0.73
ocean | —0.48 —-0.51 -0.37 0.00 -0.61
wood | —0.70 0.35 0.15 —-0.58 0.16
tree —0.26 0.65 —-041 0.58 —0.09
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LSA Example

= Example of C = UZV™: The matrix VT

| & d ds dy ds de
-0.75 -0.28 —0.20 —0.45 —0.33 —0.12
-0.29 -053 -0.19 063 022 041
028 —0.75 045 -0.20 012 -0.33
000 000 058 0.00 -0.58 0.58
—-053 029 063 019 041 —0.22

U'l-hwl\)l—l<
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Original matrix C vs. reduced C, = UZ,VT

C di dr d3 dy ds db

ship 1 0 1 0 O O

boat {0 1 0 0 O O

ocean | 1 1 0 0 0 O

wood [1 0O O 1 1 0

tree o o0 o0 1 0 1

G di d ds dy ds de

ship 0.85 0.52 0.28 0.13 0.21 —0.08
boat | 0.36 0.36 0.16 —-0.20 -0.02 -0.18
ocean | 1.01 0.72 0.36 —0.04 0.16 —0.21
wood | 0.97 0.12 0.20 1.03 0.62 0.41
tree 0.12 —-0.39 —0.08 0.90 0.41 0.49




Why the reduced dimension matrix is

better

= Similarity of d2 and d3 in the original space: 0.

= Similarity of d2 and d3 in the reduced space: 0.52 *
0.28+0.36%0.16 + 0.72 % 0.36 + 0.12 * 0.20 + -0.39
*-0.08 = 0.52

= Typically, LSA increases recall and hurts precision
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Empirical evidence

= Precision at or above median TREC precision
= Top scorer on almost 20% of TREC topics
= Slightly better on average than straight vector

spaces
= Effect of dimensionality:
Dimensions |Precision
250 0.367
300 0.371
346 0.374

But why is this clustering?

= We've talked about docs, queries, retrieval
and precision here.

= What does this have to do with clustering?

= Intuition: Dimension reduction through LSI
brings together “related” axes in the vector
space.
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Empirical evidence

= Experiments on TREC 1/2/3 — Dumais

= Lanczos SVD code (available on netlib) due to
Berry used in these experiments

= Running times of ~ one day on tens of thousands
of docs [still an obstacle to use!]

= Dimensions — various values 250-350 reported.
Reducing k improves recall.
= (Under 200 reported unsatisfactory)

= Generally expect recall to improve — what about

precision?
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Failure modes

= Negated phrases
= TREC topics sometimes negate certain query/
terms phrases — precludes simple automatic
conversion of topics to latent semantic space.
= Boolean queries
= As usual, freetext/vector space syntax of LSI
queries precludes (say) “Find any doc having to do
with the following 5 companies”

= See Dumais for more.
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Intuition from block matrices

N documents
Block 1 What’s the rank of this matrix?
Block 2 0's
M
terms
0's
Block k

[ 1 = Homogeneous non-zero blocks.
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Intuition from block matrices

N documents

Block 1

Block 2

terms

0's

Block k

Vocabulary partitioned into k topics (clusters);
each doc discusses only one topic.
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Intuition from block matrices

Likely there’s a good rank-k
approximation to this matrix.

wiper
tire Block 1
V6
Ellsle 2 Few nonzero entries
Few nonzero entries
Block k
car 1/ 0|
EIUILOI’J“EPJ

Introduction to Information Retrieval

Some wild extrapolation

= The “dimensionality” of a corpus is the
number of distinct topics represented in it.
= More mathematical wild extrapolation:

= if A has a rank k approximation of low
Frobenius error, then there are no more
than k distinct topics in the corpus.
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Intuition from block matrices

N documents

Bl What’s the best rank-k
ock 1 n X . .

approximation to this matrix?

Block 2 0's
M
terms
0's
Block k

[ 1 = non-zero entries.
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Simplistic picture
Topic 1

Topic 2

Topic 3
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LSl has many other applications

= In many settings in pattern recognition and retrieval,
we have a feature-object matrix.
= For text, the terms are features and the docs are objects.
= Could be opinions and users ...
= This matrix may be redundant in dimensionality.
= Can work with low-rank approximation.
= |f entries are missing (e.g., users’ opinions), can recover if
dimensionality is low.
= Powerful general analytical technique
= Close, principled analog to clustering methods.
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Resources

= |IR 18

= Scott Deerwester, Susan Dumais, George
Furnas, Thomas Landauer, Richard Harshman.
1990. Indexing by latent semantic analysis.
JASIS 41(6):391—407.
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