Introduction to

Information Retrieval

CS276
Information Retrieval and Web Search

Pandu Nayak and Prabhakar Raghavan
Lecture 17: Crawling and web indexes

Introduction to Information Retrieval ‘

Previous lecture recap

= Web search

= Spam

= Size of the web

= Duplicate detection

= Use Jaccard coefficient for document similarity
= Compute approximation of similarity using sketches

Introduction to Information Retrieval \

Today’s lecture

Introduction to Information Retrieval [[Sec. 20.2

= Crawling

Basic crawler operation

= Begin with known “seed” URLs
= Fetch and parse them
= Extract URLs they point to
= Place the extracted URLs on a queue

= Fetch each URL on the queue and
repeat

Introduction to Information Retrieval [[Sec. 20.2

Crawling picture

Introduction to Information Retrieval] Sec. 20.1.1

URLs crawled
and parsed

Unseen Web

Simple picture — complications

= Web crawling isn’t feasible with one machine
= All of the above steps distributed
= Malicious pages
= Spam pages
= Spider traps —incl dynamically generated
= Even non-malicious pages pose challenges
= Latency/bandwidth to remote servers vary

= Webmasters’ stipulations
= How “deep” should you crawl a site’s URL hierarchy?

= Site mirrors and duplicate pages
= Politeness — don’t hit a server too often

Introduction to Information Retrieval [[Sec. 20.1.1

What any crawler must do

Introduction to Information Retrieval [[Sec. 20.1.1

= Be Polite: Respect implicit and explicit
politeness considerations
= Only crawl allowed pages
= Respect robots.txt (more on this shortly)

= Be Robust: Be immune to spider traps and
other malicious behavior from web servers

What any crawler should do

= Be capable of distributed operation: designed to
run on multiple distributed machines

= Be scalable: designed to increase the crawl rate
by adding more machines

= Performance/efficiency: permit full use of
available processing and network resources

Introduction to Information Retrieval [[Sec. 20.1.1

What any crawler should do

Introduction to Information Retrieval [[Sec. 20.1.1

= Fetch pages of “higher quality” first
= Continuous operation: Continue fetching
fresh copies of a previously fetched page

= Extensible: Adapt to new data formats,
protocols

Updated crawling picture

URLs crawled

=
and parsed?&
(&)

Unseen Web

CITTPITITTERK

c
=
=
=
=
o

ntier

Crawling thread

Introduction to Information Retrieval ‘ Sec. 20.2

URL frontier

Introduction to Information Retrieval [[Sec. 20.2

= Can include multiple pages from the same
host

= Must avoid trying to fetch them all at the
same time

= Must try to keep all crawling threads busy

Explicit and implicit politeness

= Explicit politeness: specifications from
webmasters on what portions of site can be
crawled

= robots.txt

= |mplicit politeness: even with no
specification, avoid hitting any site too
often

Introduction to Information Retrieval ‘ Sec. 20.2.1

Introduction to Information Retrieval [[Sec. 20.2.1

Robots.txt

= Protocol for giving spiders (“robots”) limited
access to a website, originally from 1994

= www.robotstxt.org/wc/norobots.html

= Website announces its request on what can(not)
be crawled
= For a server, create a file /robots. txt
= This file specifies access restrictions

Robots.txt example

= No robot should visit any URL starting with
"/yoursite/temp/", except the robot called
“searchengine":

User—-agent: *

Disallow: /yoursite/temp/

User-agent: searchengine

Disallow:

Introduction to Information Retrieval [[Sec. 20.2.1

Introduction to Information Retrieval [[Sec. 20.2.1

Processing steps in crawling

= Pick a URL from the frontier
= Fetch the document at the URL
= Parse the URL

= Extract links from it to other docs (URLs)

= Check if URL has content already seen
= |f not, add to indexes

E.g., only crawl .edu,

Basic crawl architecture

For each extracted URL

obey robots.txt, etc.

= Ensure it passes certain URL filter tests

= Check if it is already in the frontier (duplicate URL
elimination)

Introduction to Information Retrieval [[Sec. 20.2.2

i < Y 3 [~
DNS Doc boty | URL
| FP’s set
WWW[—]
1 —1Parse—1 1 1
Fetch Conten URL Dup
seen? filter URL
elim
I—‘ URL Frontier M
Introduction to Information Retrieval [[Sec. 20.2.1

DNS (Domain Name Server)

= A lookup service on the internet

= Given a URL, retrieve its IP address

= Service provided by a distributed set of servers —thus,

lookup latencies can be high (even seconds)
= Common OS implementations of DNS lookup are
blocking: only one outstanding request at a time

= Solutions

= DNS caching

= Batch DNS resolver — collects requests and sends them out
together

Parsing: URL normalization

= When a fetched document is parsed, some of the
extracted links are relative URLs

= E.g., http://en.wikipedia.org/wiki/Main_Page has a
relative link to /wiki/Wikipedia:General_disclaimer

which is the same as the absolute URL http://
en.wikipedia.org/wiki/Wikipedia:General_disclaimer

= During parsing, must normalize (expand) such relative
URLs

Introduction to Information Retrieval [[Sec. 20.2.1

Content seen?

= Duplication is widespread on the web

= |f the page just fetched is already in the
index, do not further process it

= This is verified using document
fingerprints or shingles

Introduction to Information Retrieval [[Sec. 20.2.1

Filters and robots.txt

= Filters — regular expressions for URL's to
be crawled/not

= Once a robots.txt file is fetched from a
site, need not fetch it repeatedly

= Doing so burns bandwidth, hits web
server

= Cache robots.txt files

Introduction to Information Retrieval [[Sec. 20.2.1

Duplicate URL elimination

Introduction to Information Retrieval [[Sec. 20.2.1

= For a non-continuous (one-shot) crawl, test
to see if an extracted+filtered URL has
already been passed to the frontier

= For a continuous crawl — see details of
frontier implementation

Distributing the crawler

= Run multiple crawl threads, under different
processes — potentially at different nodes
= Geographically distributed nodes

= Partition hosts being crawled into nodes
= Hash used for partition

= How do these nodes communicate and share
URLs?

Introduction to Information Retrieval [[Sec. 20.2.1

Communication between nodes

Introduction to Information Retrieval [[Sec. 20.2.3

= Qutput of the URL filter at each node is sent to the
Dup URL Eliminator of the appropriate node

>y _y[fo
DNS Doc botq | other || URL
s
wwwi_J —1Parse[— 1 M Host [T
Fetch Fontent | URL | [$plitte ILDJLI{FL)
seen? filter .
l elim
Jém

other
URL Frontier nodes P

URL frontier: two main considerations

= Politeness: do not hit a web server too frequently

= Freshness: crawl some pages more often than
others
= E.g., pages (such as News sites) whose content

changes often

These goals may conflict each other.

(E.g., simple priority queue fails — many links out of
a page go to its own site, creating a burst of
accesses to that site.)

Introduction to Information Retrieval [[Sec. 20.2.3

Introduction to Information Retrieval [[Sec. 20.2.3

Politeness — challenges

= Even if we restrict only one thread to fetch
from a host, can hit it repeatedly

= Common heuristic: insert time gap between
successive requests to a host that is >> time
for most recent fetch from that host

URL frontier: Mercator scheme

URLs
|

Prioritizer ‘
JITUIIIIIIL]
K front queues

T
Biased front queue selector

Back queue router

I A
vvvvvvvvvvvv

B back queues
Single host an each

Back queue selector

Crawl thread rlequesting URL %

Introduction to Information Retrieval [[Sec. 20.2.3

Introduction to Information Retrieval [[Sec. 20.2.3

Mercator URL frontier

= URLs flow in from the top into the frontier
= Front queues manage prioritization

= Back queues enforce politeness

= Each queue is FIFO

Front queues

i

‘ Prioritizer

Biased front queue selector
Back queue router
I

Introduction to Information Retrieval ‘ Sec. 20.2.3

Introduction to Information Retrieval [[Sec. 20.2.3

Front queues

= Prioritizer assigns to URL an integer priority
between 1 and K

= Appends URL to corresponding queue
= Heuristics for assigning priority
= Refresh rate sampled from previous crawls

= Application-specific (e.g., “crawl news sites more
often”)

Biased front queue selector

= When a back queue requests a URL (in a
sequence to be described): picks a front queue
from which to pull a URL

= This choice can be round robin biased to queues
of higher priority, or some more sophisticated
variant

= Can be randomized

Introduction to Information Retrieval ‘ Sec. 20.2.3

Introduction to Information Retrieval [[Sec. 20.2.3

Back queues

Biased front queue selector
Back queue router

Back queue selector

J, 31

Back queue invariants

= Each back queue is kept non-empty while the
crawl is in progress

= Each back queue only contains URLs from a
single host

= Maintain a table from hosts to back queues

Host name |Back queue
3

1
B

Introduction to Information Retrieval [[Sec. 20.2.3

Introduction to Information Retrieval [[Sec. 20.2.3

Back queue heap

= One entry for each back queue

= The entry is the earliest time t, at which the host
corresponding to the back queue can be hit again

= This earliest time is determined from
= Last access to that host
= Any time buffer heuristic we choose

Back queue processing

= A crawler thread seeking a URL to crawl:

= Extracts the root of the heap

= Fetches URL at head of corresponding back queue g
(look up from table)

= Checks if queue g is now empty — if so, pulls a URL v
from front queues

= If there’s already a back queue for v’s host, append v to g
and pull another URL from front queues, repeat

= Elseaddvtogq
= When g is non-empty, create heap entry for it

Introduction to Information Retrieval [[Sec. 20.2.3

Introduction to Information Retrieval

Number of back queues B

= Keep all threads busy while respecting politeness

= Mercator recommendation: three times as many
back queues as crawler threads

Resources

= [IR Chapter 20
= Mercator: A scalable, extensible web crawler (Heydon et al.

1999)
= A standard for robot exclusion

