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Linear Algebra

Ch. 18

Today’s topic

Latent Semantic Indexing

* Term-document matrices are very
large

= But the number of topics that
people talk about is small (in some
sense)

Clothes, movies, politics, ...

= Can we represent the term-

document space by a lower
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Eigenvalues & Eigenvectors

= Eigenvectors (for a square mxm matrix S)

Sv = Av Example

(right) eigenvector  eigenvalue (61 7“2) (2> - (21) =2 C)

veR™#£0 AeR

= How many eigenvalues are there at most?
Sv=Av <= (S-A)v=0
only has a non-zero solution if |S — A\I| = 0
This is a mth order equation in A which can have at
most m distinct solutions (roots of the characteristic
polynomial) - can be complex even though S is real.
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Matrix-vector multiplication

30 0 0
S=|0 20 o| haseigenvalues 30, 20, 1 with
corresponding eigenvectors

0 0 1
) 0) 0)
v, = 0_ v, = 1_ vy = 0_
0f 0 17

On each eigenvector, S acts as a multiple of the identity
matrix: but as a different multiple on each.

2)
Any vector (say x=[ 4 }) can be viewed as a combination of
the eigenvectors: | ¢ ] X =2V, + 4v, + 6v;
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Matrix-vector multiplication

= Thus a matrix-vector multiplication such as
Sx (S, x as in the previous slide) can be
rewritten in terms of the eigenvalues/

vectors;
&< §2v] +4v, +6V;)
=28/, +48,+6,=2NV, +4\,V, + 6N, V,
S=60v, + 80V, + 6V,
= Even though x is an arbitrary vector, the

action of S on x is determined by the
eigenvalues/vectors.
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Matrix-vector multiplication

= Suggestion: the effect of “small” eigenvalues
is small.

= |f we ignored the smallest eigenvalue (1),
then instead of

60) 60)
30" we would get 20"

6) 0]

= These vectors are similar (in cosine
similarity, etc.)

Eigenvalues & Eigenvectors

For symmetric matrices, eigenvectors for distinct
eigenvalues are orthogonal

S/(I,Z} = }\,{1,2}‘/{1’2}, and )\,1 # )\,2 = V1 ° v2 = 0
All eigenvalues of a real symmetric matrix are
eal. .
for complex A, if S-A/

All eigenvalues of acpositive semidefiniteymatrix
are non-negatjyve

YweER" W =0, thenif Sy=Av=»~A=20
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Example

= Let S=[ ? ; }—' Real,symmetriC.‘

= Then S-M = 2l =
1 2-\

|S-A|=(2-2)*-1=0.
= The eigenvalues are 1 and 3 (nonnegative,
real).

= The eiger(vefto‘ft gre\ orthpgpnat and.reat);:
+ + and solve for
-1 } 1 } eigenvectors.

“Diagonal decomposition: why/
how

Let U have the eigenvectors as columnsU=| v .. v,
Then, SU can be written

Thus SU=UA, or U-1SU=A

<
=~
[—
>
>
3

And S=UAUL

Eigen/diagonal Decomposition

= Lets e R™*™ be a square matrix with m
linearly independent eigenvectors (a

“non-defective” matrix) Unique

- . . . i . f
Theorem: EX|stsSa:nI}=.1|xE'e_q déj@écﬁqb05|<]‘frgiisgtza(it
values

= (cf. matrix diagonalization theorem)

= Columns of U are Rhe eigenvectors é’f S

n Di'\hnn'\l Alarannte

nFf AvA i
A =diag(A1, -5 Am), Ai > Angnvalues of

mroaucuorn o mormduorn
: Sec. 18.1

“Diagonal decomposition -
example

Recall S= 21 M =LA, =
1 2
The eigenvectdrs 1 1 ]anli U= orr% !
_ g 5 _1 1
1 1 )
_ 1/2 -1/2
| ting, haveU™! = Recall
nverting, we have [ s 12 } TR

Then, S=UAU- =1 1 1 0 1/2 -1/2
-1 1[0 3| 1/2 1/2
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Example continued

Let’s divide U (and multiply U1) byv/2

hen s 142 142 [1 ol N2 -1/42
' N2 N2 L0 3 N2 12
Q A (Q = Q")
‘ Why? Stay tuned ... ‘

Exercise

= Examine the symmetric eigen
decomposition, if any, for each of the
following matrices:

o [ )
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Similarity = Clustering

= We can compute the similarity between two
document vector representations x; and x;

by x;x;T
= Let X = [X; ... Xp]
= Then XXTis a matrix of similarities
= Xj; is symmetric
= So XXT = QAQT
= So we can decompose this similarity space

into a set of orthonormal basis vectors
(given in Q) scaled by the eigenvalues in A
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Symmetric Eigen Decomposition

= Ifs e R is a symmetric matrix:
* Theorem: There exists a (unique) eigen
decompositions= QA Q"
= where Q is orthogonal:
= Q1l=QT
= Columns of Q are normalized
eigenvectors
= Columns are orthogonal.
= (everything is real)
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Time out!

= | came to this class to learn about text
retrieval and mining, not to have my linear
algebra past dredged up again ...
= But if you want to dredge, Strang’s Applied
Mathematics is a good place to start.
= What do these matrices have to do with
text?

= Recall M x N term-document matrices ...

= But everything so far needs square matrices
-s0...
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Singular Value Decomposition

For an M x N matrix A of rank r there exists a
factorization (Singular Value Decomposition = SVD)

as follows: A=USV"

‘MXM‘ ‘MXN‘ ‘Vis NXN‘

(Not proven here.)
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Singular Value Decomposition
A=U§VT
| MxM| | MxN| |V is NxN|

= AAT = QAQT
= AAT = (UZVT)(UZVTT = (UZVT)(VZUT) = Ux2UT
The columns of U are orthogonal eigenvectors of

-
‘ehAe ‘columns of V are orthogonal eigenvectors of ATA.
Eigenvalues A, ... A, of AAT are the eigenvalues of
ATA. o, =N

2=diag(o,..0,) Singular values

Sec. 18.2
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Singular Value Decomposition

= |llustration of SVD dimensions and
sparseness

*
*
*

*
*

A v =
.....
* * * * * * * * e | |lx * x x =
* * * * * = * * * e | |*x * x x %
* * * * * * * * L I
\_:_, \_7,_/(_}_/ xxxx
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SVD example

1 -1

Let A=| 0 1
10

Thus M=3, N=2. Its SVD is

0 2/J6 1/43 o
/N2 -1/4J6  1/43 0 3 l/ﬁ 1/{/5_]
UNZ U6 B || g o LTYE TN

Typically, the singular values arranged in decreasing order.

Low-rank Approximation

= SVD can be used to compute optimal low-
rank approximations.

= Approximation problem: Find A, of rank k
suctz\ktgaftnin A-X

Xrank(X)=k

Frobenius norm

[Allp =

A, and X are both mxn matrices.
Typically, want k << r.
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Low-rank Approximation

= Solution via SVD
A =U diag(o,,...,0,,0,...,0) V"

set smallest r-k
singular values to zero

xxxxxx
* * * ¥ ¥ * * -. xxxxx
Kok ok ok k| =[x % . T
* * * * ¥ * « || | | o2 o2 o x
[ N N ——-—
” Y e Lx % % * *
) = N ,

k
A = o.u \/T column notation: sum
k o

of rank 1 matrices

Reduced SVD

= |f we retain only k singular values, and set
the rest to 0, then we don’t need the matrix
parts in color

= Then X is kxk, U is Mxk, VT is kxN, and A,
is MxN

= This is referred to as the reduced SVD

= |t is the convenient (space-saving) and

[

xxxxx

xxxxx

¥
]
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Approximation error

= How good (bad) is this approximation?

= |t’s the best possible, measured by the
Frobenius norm of the error:

min A-X

Xrank( X)=k

where the ¢, are ordered such that ¢; = 5;,;.

Suggests why Frobenius error drops as k
increases.

ITILTOUUCLION L0 IIOTInduorn

Latent Semantic
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Vector Space Model: Pros

= Automatic selection of index terms

= Partial matching of queries and documents
(dealing with the case where no document contains all
search terms)

= Ranking according to similarity score
(dealing with large result sets)

= Term weighting schemes (improves retrieval
performance)

= Various extensions

= Document clustering

= Relevance feedback (modifying query vector)
= Geometric foundation

Potrioya Sec. 18.3

SVD Low-rank approximation

= Whereas the term-doc matrix A may have
M=50000, N=10 million (and rank close to
50000)

= We can construct an approximation A,
with rank 100.

= Of all rank 100 matrices, it would have the
lowest Frobenius error.

= Great ... but why would we??
= Answer: Latent Semantic Indexing

C. Eckart, G. Young, The approximation of a matrix by another of lower rank.
Psychometrika, 1, 211-218, 1936.
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What it is

* From term-doc matrix A, we
compute the approximation A,

= There is a row for each term and a
column for each doc in A,

= Thus docs live in a space of k<<r
dimensions

* These dimensions are not the
original axes

= But why?
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Problems with Lexical Semantics

= Ambiguity and association in natural
language
= Polysemy: Words often have a multitude
of meanings and different types of usage
(more severe in very heterogeneous
collections).

= The vector space model is unable to
discriminate between different meanings
of the same word.

Simtrue(d7 q) < COS(A(CZ; q_>)




Problems with Lexical Semantics

= Synonymy: Different terms may
have an identical or a similar
meaning (weaker: words
indicating the same topic).

= No associations between words
are made in the vector space
representation.

sim,,..(d, q)> COS(l(CZ; 7))

Polysemy and Context

* Document similarity on single word level:

polysemy and context )
ring
jupiter
_—"| space
meaning 1 voyager
planet saturn
meaning 2 car
company
contribution to similarity, if dodge
used in 15t meaning, but not for
ifin 2% —
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Latent Semantic Indexing (LSI)

= Perform a low-rank approximation of
document-term matrix (typical rank 100-
300)

= General idea

= Map documents (and terms) to a low-
dimensional representation.

= Design a mapping such that the low-
dimensional space reflects semantic
associations (latent semantic space).

= Compute document similarity based on the
inner product in this latent semantic space

Goals of LSI

= LSI takes documents that are semantically
similar (= talk about the same topics), but
are not similar in the vector space (because
they use different words) and re-represents
them in a reduced vector space in which
they have higher similarity.

= Similar terms map to similar location in low
dimensional space
= Noise reduction by dimension reduction

Sec. 18.4
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Latent Semantic Analysis

= Latent semantic space: illustrating

O Doc1

Doc 3
Laptop |:| ©
Portable [] Computer []

Display []

Portable
LSI Dimension 2

ODoc2

Laptop LSI Dimension 1

courtesy of Susan Dumais

Performing the maps

= Each row and column of A gets mapped into
the k-dimensional LS| space, by the SVD.

= Claim - this is not only the mapping with
the best (Frobenius error) approximation to
A, but in fact improves retrieval.

= A query g is also mapped into this space, by
Q= qTUkE;(l

= Query NOT a sparse vector.




LSA Example

= A simple example term-document matrix
(binary)
C d dry d3 dy ds ds
ship 1 0 1 0 0 O
boat [0 1 0 0 O0 O
ocean|1 1 0 0 0 O
wood {1 O O 1 1 O
tree 0O 0 0 1 o0 1
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LSA Example
= Example of C = UZVT: The matrix

2 |1 2 3 4 5

2.16 0.00 0.00 0.00 0.00
0.00 159 0.00 0.00 0.00
0.00 0.00 1.28 0.00 0.00
0.00 0.00 0.00 1.00 0.00
0.00 0.00 0.00 0.00 0.39

B WN =

"~ LSA Example: Reaucing the

dimension
U 1 2 3 4 5
ship —0.44 —0.30 0.00 0.00 0.00

—0.13 —0.33 0.00 0.00 0.00
—0.48 —0.51 0.00 0.00 0.00
wood | —0.70  0.35 0.00 0.00 0.00
tree | —0.26 0.65 0.00 0.0 0.00
1 2 3 4 5

2.16 0.00 0.00 0.00 0.00
0.00 1.59 0.00 0.0 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00

boat
ocean

—-0.75 -0.28 —-0.20 -0.45 —0.33 -0.12
-0.29 -053 -019 063 022 041
0.00 000 0.00 000 0.00 0.00
0.00 000 0.00 000 000 0.00
0.00 000 000 000 000 0.00

LSA Example
= Example of C = UZVT: The matrix U

U 1 2 3 4 5
ship —0.44 —-0.30 0.57 0.58 0.25
boat | —0.13 —-0.33 —-0.59 0.00 0.73
ocean | —0.48 —-0.51 —-0.37 0.00 -0.61
wood | —0.70 0.35 0.15 -—-0.58 0.16
tree —0.26 065 —-041 0.58 —-0.09

LSA Example

= Example of C = UZVT: The matrix VT

T di dy ds da ds de
—-0.75 —-028 —-0.20 —0.45 -0.33 -—0.12
—-0.29 —-053 -0.19 063 022 041
028 —-075 045 —-020 0.12 -0.33
000 000 058 000 -0.58 058
—-053 029 063 019 041 -—0.22

m-hwl\)!—l<

HHOOOS

C2 dl d2 d3 d4 d5 d6
ship 0.85 0.52 0.28 0.13 0.21 —0.08
boat | 0.36 0.36 0.16 —0.20 —-0.02 -0.18
ocean | 1.01 0.72 0.36 —0.04 0.16 -0.21
wood | 0.97 0.12 0.20 1.03 0.62 0.41
tree 0.12 -0.39 -0.08 0.90 0.41 0.49




WHy The requced g mension

matrix is better

= Similarity of d2 and d3 in the original space:
0.

= Similarity of d2 and d3 in the reduced
space: 0.52 « 0.28 + 0.36 « 0.16 + 0.72 =«

0.36 + 0.12 « 0.20 + —0.39 « —0.08 = 0.52

= Typically, LSA increases recall and hurts
precision
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Empirical evidence

= Precision at or above median TREC
precision
= Top scorer on almost 20% of TREC topics
= Slightly better on average than straight
vector spaces
= Effect of dimensionalityf

Dimensions |Precision

250 0.367
300 0.371
346 0.374
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Empirical evidence

= Experiments on TREC 1/2/3 - Dumais
= Lanczos SVD code (available on netlib)
due to Berry used in these experiments
= Running times of ~ one day on tens of
thousands of docs [still an obstacle to
usel!]
= Dimensions - various values 250-350
reported. Reducing k improves recall.
= (Under 200 reported unsatisfactory)
= Generally expect recall to improve - what
about precision?
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Failure modes

= Negated phrases

= TREC topics sometimes negate certain
query/terms phrases - precludes simple
automatic conversion of topics to latent
semantic space.

= Boolean queries

= As usual, freetext/vector space syntax of
LSI queries precludes (say) “Find any doc
having to do with the following 5
companies”

= See Dumais for more.
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But why is this clustering?

= We've talked about docs, queries,
retrieval and precision here.

= What does this have to do with
clustering?

= Intuition: Dimension reduction
through LSI brings together
“related” axes in the vector space.

Simplistic picture

Topic 1

Topic 2

Topic 3




Some wild extrapolation

= The “dimensionality” of a corpus is
the number of distinct topics
represented in it.

= More mathematical wild
extrapolation:
= if A has a rank k approximation of
low Frobenius error, then there are
no more than k distinct topics in the
corpus.

Resources

= 1IR 18

= Scott Deerwester, Susan Dumais,
George Furnas, Thomas Landauer,
Richard Harshman. 1990. Indexing
by latent semantic analysis. JASIS
41(6):391—407.

LSl has many other applications

* |[n many settings in pattern recognition and
retrieval, we have a feature-object matrix.

= For text, the terms are features and the docs are
objects.

= Could be opinions and users ...
= This matrix may be redundant in dimensionality.
= Can work with low-rank approximation.
= |If entries are missing (e.g., users’ opinions), can
recover if dimensionality is low.
= Powerful general analytical technique
= Close, principled analog to clustering methods.




