
Introduction to Information 
Retrieval   

Introduction to
Information Retrieval

CS276: Information Retrieval and Web 
Search

Christopher Manning and Pandu Nayak

Lecture 13: Latent Semantic Indexing

Introduction to Information 
Retrieval   

Today’s topic
Latent Semantic Indexing

 Term-document matrices are very 
large

 But the number of topics that 
people talk about is small (in some 
sense)
Clothes, movies, politics, …

 Can we represent the term-
document space by a lower 

Ch. 18
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Linear Algebra 
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Eigenvalues & Eigenvectors
 Eigenvectors (for a square m×m matrix S)

 How many eigenvalues are there at most?

only has a non-zero solution if 

This is a mth order equation in λ which can have at 

most m distinct solutions (roots of the characteristic 

polynomial) – can be complex even though S is real.

eigenvalue(right) eigenvector

Example

Sec. 18.1
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Matrix-vector multiplication

has eigenvalues 30, 20, 1 with
corresponding eigenvectors

On each eigenvector, S acts as a multiple of the identity
matrix: but as a different multiple on each.

Any vector (say x=     ) can be viewed as a combination of
the eigenvectors:               x = 2v1 + 4v2 + 6v3
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Matrix-vector multiplication
 Thus a matrix-vector multiplication such as 

Sx (S, x as in the previous slide) can be 
rewritten in terms of the eigenvalues/
vectors:

 Even though x is an arbitrary vector, the 
action of S on x is determined by the 
eigenvalues/vectors.

Sec. 18.1
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Matrix-vector multiplication
 Suggestion: the effect of “small” eigenvalues 

is small.
 If we ignored the smallest eigenvalue (1), 

then instead of

we would get

 These vectors are similar (in cosine 
similarity, etc.)
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Eigenvalues & Eigenvectors
For symmetric matrices, eigenvectors for distinct
eigenvalues are orthogonal

All eigenvalues of a real symmetric matrix are 
real.

All eigenvalues of a positive semidefinite matrix
are non-negative

Sec. 18.1
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Plug in these values 
and solve for 
eigenvectors.

Example
 Let

 Then

 The eigenvalues are 1 and 3 (nonnegative, 
real). 

 The eigenvectors are orthogonal (and real):

Real, symmetric.
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 Let                    be a square matrix with m 
linearly independent eigenvectors (a 
“non-defective” matrix)

 Theorem: Exists an eigen decomposition                      

 (cf. matrix diagonalization theorem)

 Columns of U are the eigenvectors of S
 Diagonal elements of     are eigenvalues of 

Eigen/diagonal Decomposition

diagonal

Unique 
for 

distinct 
eigen-
values

Sec. 18.1
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Diagonal decomposition: why/
how

Let U have the eigenvectors as columns:

Then, SU can be written

And S=UΛU–1.

Thus SU=UΛ, or U–1SU=Λ
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Diagonal decomposition - 
example

Recall 

The eigenvectors                  and              form 

Inverting, we have

Then, S=UΛU–1 =

Recall
UU–1 =1.

Sec. 18.1
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Example continued
Let’s divide U (and multiply U–1) by  

Then, S=

Q (Q-1= QT )Λ

Why? Stay tuned …
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 If                    is a symmetric matrix:
 Theorem: There exists a (unique) eigen 

decomposition

 where Q is orthogonal:
 Q-1= QT

 Columns of Q are normalized 
eigenvectors

 Columns are orthogonal.
 (everything is real)

Symmetric Eigen Decomposition

Sec. 18.1
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Exercise
 Examine the symmetric eigen 

decomposition, if any, for each of the 
following matrices:
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Time out!
 I came to this class to learn about text 

retrieval and mining, not to have my linear 
algebra past dredged up again …
 But if you want to dredge, Strang’s Applied 

Mathematics is a good place to start.
 What do these matrices have to do with 

text?

 Recall M × N term-document matrices … 
 But everything so far needs square matrices 

– so …
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Similarity  Clustering
 We can compute the similarity between two 

document vector representations xi and xj 
by xixj

T

 Let X = [x1 … xN] 
 Then XXT is a matrix of similarities
 Xij is symmetric
 So XXT = QΛQT

 So we can decompose this similarity space 
into a set of orthonormal basis vectors 
(given in Q) scaled by the eigenvalues in Λ

17
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Singular Value Decomposition

M×M M×N V is N×N

For an M × N matrix A of rank r there exists a
factorization (Singular Value Decomposition = SVD)
as follows:

(Not proven here.)

Sec. 18.2
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Singular Value Decomposition

 AAT = QΛQT

 AAT = (UΣVT)(UΣVT)T = (UΣVT)(VΣUT) = UΣ2UT 

M×M M×N V is N×N

The columns of U are orthogonal eigenvectors of 
AAT.The columns of V are orthogonal eigenvectors of ATA.

Singular values

Eigenvalues λ1 … λr of AAT are the eigenvalues of 
ATA.
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Singular Value Decomposition
 Illustration of SVD dimensions and 

sparseness

Sec. 18.2
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SVD example

Let

Thus M=3, N=2. Its SVD is

Typically, the singular values arranged in decreasing order.
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 SVD can be used to compute optimal low-
rank approximations.

 Approximation problem: Find Ak of rank k 
such that

Ak and X are both m×n matrices.
Typically, want k << r.

Low-rank Approximation

Frobenius norm

Sec. 18.3
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 Solution via SVD

Low-rank Approximation

set smallest r-k

singular values to zero

column notation: sum 

of rank 1 matrices

k
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 If we retain only k singular values, and set 
the rest to 0, then we don’t need the matrix 
parts in color

 Then Σ is k×k, U is M×k, VT is k×N, and Ak 
is M×N 

 This is referred to as the reduced SVD
 It is the convenient (space-saving) and 

usual form for computational applications
 It’s what Matlab gives you

Reduced SVD

k

Sec. 18.3
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Approximation error
 How good (bad) is this approximation?
 It’s the best possible, measured by the 

Frobenius norm of the error:

where the σi are ordered such that σi ≥ σi+1.
Suggests why Frobenius error drops as k 

increases.
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SVD Low-rank approximation
 Whereas the term-doc matrix A may have 

M=50000, N=10 million (and rank close to 
50000)

 We can construct an approximation A100 
with rank 100.
 Of all rank 100 matrices, it would have the 

lowest Frobenius error.
 Great … but why would we??
 Answer: Latent Semantic Indexing

C. Eckart, G. Young, The approximation of a matrix by another of lower rank. 

Psychometrika, 1, 211-218, 1936.

Sec. 18.3
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Latent Semantic 
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What it is
 From term-doc matrix A, we 

compute the approximation Ak.
 There is a row for each term and a 

column for each doc in Ak
 Thus docs live in a space of k<<r 

dimensions
 These dimensions are not the 

original axes
 But why?

Sec. 18.4
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Vector Space Model: Pros
 Automatic selection of index terms
 Partial matching of queries and documents 

(dealing with the case where no document contains all 
search terms)

 Ranking according to similarity score 
(dealing with large result sets)

 Term weighting schemes (improves retrieval 
performance)

 Various extensions
 Document clustering
 Relevance feedback (modifying query vector)

 Geometric foundation
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Problems with Lexical Semantics
 Ambiguity and association in natural 

language
 Polysemy: Words often have a multitude 

of meanings and different types of usage 
(more severe in very heterogeneous 
collections).

 The vector space model is unable to 
discriminate between different meanings 
of the same word.
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Problems with Lexical Semantics
 Synonymy: Different terms may 

have an identical or a similar 
meaning (weaker: words 
indicating the same topic).

 No associations between words 
are made in the vector space 
representation.
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Polysemy and Context
 Document similarity on single word level: 

polysemy and context

car
company

•••

dodge
ford

meaning 2

ring
jupiter

•••

space
voyagermeaning 1

…
saturn

...

…
planet

...

contribution to similarity, if 

used in 1st meaning, but not 

if in 2nd 
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Latent Semantic Indexing (LSI)
 Perform a low-rank approximation of 

document-term matrix (typical rank 100–
300)

 General idea
 Map documents (and terms) to a low-

dimensional representation.
 Design a mapping such that the low-

dimensional space reflects semantic 
associations (latent semantic space).

 Compute document similarity based on the 
inner product in this latent semantic space
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Goals of LSI
 LSI takes documents that are semantically 

similar (= talk about the same topics), but 
are not similar in the vector space (because 
they use different words) and re-represents 
them in a reduced vector space in which 
they have higher similarity. 

 Similar terms map to similar location in low 
dimensional space

 Noise reduction by dimension reduction

Sec. 18.4
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Latent Semantic Analysis
 Latent semantic space: illustrating 

example

courtesy of Susan Dumais
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Performing the maps
 Each row and column of A gets mapped into 

the k-dimensional LSI space, by the SVD.
 Claim – this is not only the mapping with 

the best (Frobenius error) approximation to 
A, but in fact improves retrieval.

 A query q is also mapped into this space, by

 Query NOT a sparse vector.

Sec. 18.4
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LSA Example
 A simple example term-document matrix 

(binary)

37

Introduction to Information 
Retrieval   

LSA Example
 Example of C = UΣVT: The matrix U 

38
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LSA Example
 Example of C = UΣVT: The matrix Σ 

39
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LSA Example
 Example of C = UΣVT: The matrix VT 

40
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LSA Example: Reducing the 
dimension

41

Introduction to Information 
Retrieval   Original matrix C vs. reduced C2 

= UΣ2VT 

42
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Why the reduced dimension 
matrix is better
 Similarity of d2 and d3 in the original space: 

0. 
 Similarity of d2 and d3 in the reduced 

space: 0.52 ∗ 0.28 + 0.36 ∗ 0.16 + 0.72 ∗ 
0.36 + 0.12 ∗ 0.20 + −0.39 ∗ −0.08 ≈ 0.52 

 Typically, LSA increases recall and hurts 
precision

43
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Empirical evidence
 Experiments on TREC 1/2/3 – Dumais
 Lanczos SVD code (available on netlib) 

due to Berry used in these experiments
 Running times of ~ one day on tens of 

thousands of docs [still an obstacle to 
use!]

 Dimensions – various values 250-350 
reported.  Reducing k improves recall.
 (Under 200 reported unsatisfactory)

 Generally expect recall to improve – what 
about precision?

Sec. 18.4
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Empirical evidence
 Precision at or above median TREC 

precision
 Top scorer on almost 20% of TREC topics

 Slightly better on average than straight 
vector spaces

 Effect of dimensionality:
Dimensions Precision
250 0.367
300 0.371
346 0.374
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Failure modes
 Negated phrases

 TREC topics sometimes negate certain 
query/terms phrases – precludes simple 
automatic conversion of topics to latent 
semantic space.

 Boolean queries
 As usual, freetext/vector space syntax of 

LSI queries precludes (say) “Find any doc 
having to do with the following 5 
companies”

 See Dumais for more.

Sec. 18.4
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But why is this clustering?
 We’ve talked about docs, queries, 

retrieval and precision here.
 What does this have to do with 

clustering?
 Intuition: Dimension reduction 

through LSI brings together 
“related” axes in the vector space.
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Simplistic picture
Topic 1

Topic 2

Topic 3
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Some wild extrapolation
 The “dimensionality” of a corpus is 

the number of distinct topics 
represented in it.

 More mathematical wild 
extrapolation:
 if A has a rank k approximation of 

low Frobenius error, then there are 
no more than k distinct topics in the 
corpus.
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LSI has many other applications
 In many settings in pattern recognition and 

retrieval, we have a feature-object matrix.
 For text, the terms are features and the docs are 

objects.
 Could be opinions and users …
 This matrix may be redundant in dimensionality.
 Can work with low-rank approximation.
 If entries are missing (e.g., users’ opinions), can 

recover if dimensionality is low.
 Powerful general analytical technique

 Close, principled analog to clustering methods.
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Resources
 IIR 18
 Scott Deerwester, Susan Dumais, 

George Furnas, Thomas Landauer, 
Richard Harshman.  1990.  Indexing 
by latent semantic analysis. JASIS 
41(6):391—407.


