Introduction to

 Information RetrievalCS276: Information Retrieval and Web Search
Christopher Manning and Pandu Nayak
Lecture 13: Latent Semantic Indexing

Today's topic

Latent Semantic Indexing

- Term-document matrices are very large
- But the number of topics that people talk about is small (in some sense)
-Clothes, movies, politics, ...
- Can we represent the termdocument space by a lower

Linear Algebra

Matrix-vector multiplication

On each eigenvector, S acts as a multiple of the identity matrix: but as a different multiple on each.
Any vector (say $x=\left(\begin{array}{c}2 \\ 4 \\ 6\end{array}\right)$) can be viewed as a combination of the eigenvectors: ${ }^{6}{ }_{j} \quad \mathrm{x}=2 \mathrm{v}_{1}+4 \mathrm{v}_{2}+6 \mathrm{v}_{3}$

Eigenvalues \& Eigenvectors

- Eigenvectors (for a square $m \times m$ matrix S)

- How many eigenvalues are there at most? $\mathbf{S v}=\lambda \mathbf{v} \Longleftrightarrow(\mathbf{S}-\lambda \mathbf{I}) \mathbf{v}=\mathbf{0}$
only has a non-zero solution if $|\mathbf{S}-\lambda \mathbf{I}|=0$
This is a m th order equation in λ which can have at most m distinct solutions (roots of the characteristic polynomial) - can be complex even though \mathbf{S} is real.

Matrix-vector multiplication

- Thus a matrix-vector multiplication such as $\mathrm{Sx}(\mathrm{S}, \mathrm{x}$ as in the previous slide) can be rewritten in terms of the eigenvalues/
vectors $=S\left(2 v_{1}+4 v_{2}+6 v_{3}\right)$
$S x=2 S V_{1}+4 S V_{2}+6 S V_{3}=2 \lambda_{1} v_{1}+4 \lambda_{2} v_{2}+6 \lambda_{3} v_{3}$
$S x=60 v_{1}+80 v_{2}+6 v_{3}$
- Even though x is an arbitrary vector, the action of S on x is determined by the eigenvalues/vectors.

Matrix-vector multiplication

" Suggestion: the effect of "small" eigenvalues is small.

- If we ignored the smallest eigenvalue (1), then instead of
- These vectors are similar (in cosine similarity, etc.)

Example

- Let

$$
S=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right] \quad \text { Real, symmetric. }
$$

- Then

$$
\begin{aligned}
& S-\lambda I=\left[\begin{array}{cc}
2-\lambda & 1 \\
1 & 2-\lambda
\end{array}\right] \Rightarrow \\
& |S-\lambda I|=(2-\lambda)^{2}-1=0 .
\end{aligned}
$$

- The eigenvalues are 1 and 3 (nonnegative, real).
- The eigeriveftors are) orthoqpignal.tannd reati):

$$
\left(-1 \bar{j}\left[\begin{array}{cc}
1 & j \\
1 & \begin{array}{c}
\text { and solve for } \\
\text { aigenvectors. }
\end{array} \\
\hline
\end{array}\right.\right.
$$

Eigenvalues \& Eigenvectors

For symmetric matrices, eigenvectors for distinct eigenvalues are orthogonal

$$
\mathcal{S}_{\{1,2\}}=\lambda_{\{1,2\}} v_{\{1,2,2} \text {, and } \lambda_{1} \neq \lambda_{2} \Rightarrow V_{1} \bullet v_{2}=0
$$

All eigenvalues of a real symmetric matrix are real.
for complex λ, if $S-\lambda /$

All eigenvalues of a positive semidefinite matrix are non-negative
$\forall w \in \Re^{n}, w^{\top} S W \geq 0$, then if $S v=\lambda v \Rightarrow \lambda \geq 0$

Eigen/diagonal Decomposition

- LetS $\in \mathbb{R}^{m \times m} \quad$ be a square matrix with m linearly independent eigenvectors (a "non-defective" matrix)
- Theorem: Exists an eiligen de diagongposixion distinct $\begin{gathered}\text { Unique } \\ =\mathbf{U} \Lambda U^{-1} \\ \text { eigen- }\end{gathered}$
- (cf. matrix diagonalization theorem)
- Columns of \mathbf{U} are the eigenvectors $\mathbf{S}^{f} \mathbf{S}$

Diagonal decomposition: why/ how

Let \mathbf{U} have the eigenvectors as columns: $U=\left[\begin{array}{lll} & & \\ v_{1} & \ldots & v_{n} \\ & & \end{array}\right]$
Then, SU can be written
$\boldsymbol{S U}=S\left[\begin{array}{llll}v_{1} & \ldots & v_{n} \\ & & & \end{array}\right]=\left[\begin{array}{llll}\lambda_{1} v_{1} & \ldots & \lambda_{n} v_{n}\end{array}\right]=\left[\begin{array}{lll}v_{1} & \ldots & v_{n} \\ & & \\ & & \end{array}\right]\left[\begin{array}{lll}\lambda_{1} & & \\ & \ldots & \\ & & \lambda_{n}\end{array}\right]$
Thus $\mathbf{S U}=\mathbf{U} \Lambda$, or $\mathbf{U}^{-\mathbf{1}} \mathbf{S} \mathbf{U}=\Lambda$
And $\mathbf{S}=\mathbf{U} \wedge \mathbf{U}^{\mathbf{- 1}}$.

Diagonal decomposition example

Recall $S=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right] ; \lambda_{1}=1, \lambda_{2}=3$.
The eigenvectors $\left.1 \begin{array}{c}1 \\ -1\end{array}\right) \quad\binom{\operatorname{and}}{1} \quad U=\left[\begin{array}{ll}1 & 1 \\ j\end{array}\right]$
Inverting, we have $U^{-1}=\left[\begin{array}{cc}1 / 2 & -1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right] \begin{gathered}\text { Recall } \\ U^{-1}=1 .\end{gathered}$
Then, $\mathbf{S}=\mathbf{U} \backslash \mathbf{U}-\left[\begin{array}{ll}1 & 1 \\ -1 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right]\left[\begin{array}{cc}1 / 2 & -1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right]$

Example continued

Let's divide \mathbf{U} (and multiply $\mathbf{U}^{\mathbf{- 1}}$) by $\sqrt{2}$
Then, $\mathbf{S}=\left[\begin{array}{cc}\left.\begin{array}{cc}\left.\begin{array}{ll}1 / \sqrt{2} & 1 / \sqrt{2} \\ -1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right] \\ \mathbf{Q} & \Lambda\end{array}\right] & \left.\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right]\left[\begin{array}{ll}1 / \sqrt{2} & -1 / \sqrt{2} \\ 1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right. \\ & \left(\mathbf{Q}^{-1}=\mathbf{Q}^{\top}\right)\end{array}\right.$

Exercise

- Examine the symmetric eigen decomposition, if any, for each of the following matrices:

$$
\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] \quad\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad\left[\begin{array}{cc}
1 & 2 \\
-2 & 3
\end{array}\right] \quad\left[\begin{array}{ll}
2 & 2 \\
2 & 4
\end{array}\right]
$$

Symmetric Eigen Decomposition

- If $S \in \mathbb{R}^{m \times m} \quad$ is a symmetric matrix:
" Theorem: There exists a (unique) eigen decomposition $=Q \wedge Q^{T}$
- where \mathbf{Q} is orthogonal:
- $\mathbf{Q}^{-1}=\mathbf{Q}^{\top}$
- Columns of \mathbf{Q} are normalized eigenvectors
- Columns are orthogonal.
- (everything is real)

Time out!

- I came to this class to learn about text retrieval and mining, not to have my linear algebra past dredged up again ...
- But if you want to dredge, Strang's Applied Mathematics is a good place to start.
- What do these matrices have to do with text?
- Recall $\mathrm{M} \times \mathrm{N}$ term-document matrices ...
- But everything so far needs square matrices - SO ...

Singular Value Decomposition

For an $\mathrm{M} \times \mathrm{N}$ matrix \mathbf{A} of rank r there exists a factorization (Singular Value Decomposition = SVD) as follows:

(Not proven here.)

Singular Value Decomposition

- $\mathrm{AA}^{\top}=\mathrm{Q} \wedge \mathrm{Q}^{\top}$
- $A A^{\top}=\left(U \Sigma V^{\top}\right)\left(U \Sigma V^{\top}\right)^{\top}=\left(U \Sigma V^{\top}\right)\left(V \Sigma U^{\top}\right)=U \Sigma^{2} U^{\top}$

The columns of \mathbf{U} are orthogonal eigenvectors of $A A^{\top}$.columns of V are orthogonal eigenvectors of $A^{\top} A$. Eigenvalues $\lambda_{1} \ldots \lambda_{r}$ of ${A A^{\top}}^{\top}$ are the eigenvalues of $A^{\top} A$.

$$
\sigma_{i}=\sqrt{\lambda_{i}}
$$

$$
\Sigma=\operatorname{diag}\left(\sigma_{1} \ldots \sigma_{r}\right) \quad \text { Singular values }
$$

SVD example
Let $A=\left[\begin{array}{cc}1 & -1 \\ 0 & 1 \\ 1 & 0\end{array}\right]$
Thus $\mathrm{M}=3, \mathrm{~N}=2$. Its SVD is
$\left[\begin{array}{ccc}0 & 2 / \sqrt{6} & 1 / \sqrt{3} \\ 1 / \sqrt{2} & -1 / \sqrt{6} & 1 / \sqrt{3} \\ 1 / \sqrt{2} & 1 / \sqrt{6} & -1 / \sqrt{3}\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ 0 & \sqrt{3} \\ 0 & 0\end{array}\right]\left[\begin{array}{cc}1 / \sqrt{2} & 1 / \sqrt{2} \\ 1 / \sqrt{2} & -1 / \sqrt{2}\end{array}\right]$

Typically, the singular values arranged in decreasing order.

Low-rank Approximation

- Solution via SVD

$$
A_{k}=U \operatorname{diag}(\sigma_{1}, \ldots, \sigma_{k}, \underbrace{0, \ldots, 0)}_{\begin{array}{c}
\text { set smallest } r \text {-k } \\
\text { singular values to zero }
\end{array}} V^{T}
$$

$$
A_{k}=\sum_{i=1}^{k} \sigma_{i} u_{i} v_{i}^{T} \quad \begin{gathered}
\text { column notation: sum } \\
\text { of rank } 1 \text { matrices }
\end{gathered}
$$

Singular Value Decomposition

- Illustration of SVD dimensions and sparseness

Low-rank Approximation

- SVD can be used to compute optimal lowrank approximations.
- Approximation problem: Find $\mathbf{A}_{\mathbf{k}}$ of rank \mathbf{k} such $_{A_{k}}^{\text {that }} \min _{X: \operatorname{rank}(X)=k} A-X$ \qquad - Frobenius norm

$$
\|A\|_{F} \equiv \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}} .
$$

A_{k} and X are both $m \times n$ matrices.
Typically, want $k \ll r$.

Reduced SVD

- If we retain only k singular values, and set the rest to 0 , then we don't need the matrix parts in color
- Then Σ is $k \times k, U$ is $M \times k, V^{\top}$ is $k \times N$, and A_{k} is $\mathrm{M} \times \mathrm{N}$
- This is referred to as the reduced SVD
- It is the convenient (space-saving) and

Approximation error

- How good (bad) is this approximation?
- It's the best possible, measured by the Frobenius norm of the error:

$$
\min _{x_{: \times a k k}(X)=k} A-X
$$

where the σ_{i} are ordered such that $\sigma_{i} \geq \sigma_{i+1}$. Suggests why Frobenius error drops as k increases.

SVD Low-rank approximation

- Whereas the term-doc matrix A may have $\mathrm{M}=50000, \mathrm{~N}=10$ million (and rank close to 50000)
- We can construct an approximation A_{100} with rank 100.
- Of all rank 100 matrices, it would have the lowest Frobenius error.
- Great ... but why would we??
- Answer: Latent Semantic Indexing
C. Eckart, G. Young, The approximation of a matrix by another of lower rank. Psychometrika, 1, 211-218, 1936.

What it is

- From term-doc matrix A, we compute the approximation A_{k}.
- There is a row for each term and a column for each doc in A_{k}
- Thus docs live in a space of $k \ll r$ dimensions
- These dimensions are not the original axes
- But why?

Vector Space Model: Pros

- Automatic selection of index terms
- Partial matching of queries and documents (dealing with the case where no document contains all search terms)
- Ranking according to similarity score (dealing with large result sets)
- Term weighting schemes (improves retrieval performance)
- Various extensions
- Document clustering
- Relevance feedback (modifying query vector)
- Geometric foundation

Problems with Lexical Semantics

- Ambiguity and association in natural language
- Polysemy: Words often have a multitude of meanings and different types of usage (more severe in very heterogeneous collections).
- The vector space model is unable to discriminate between different meanings of the same word.

$$
\operatorname{sim}_{\text {true }}(d, q)<\cos (\angle(\vec{d}, \vec{q}))
$$

Problems with Lexical Semantics

- Synonymy: Different terms may have an identical or a similar meaning (weaker: words indicating the same topic).
- No associations between words are made in the vector space representation.

$$
\operatorname{sim}_{\text {true }}(d, q)>\cos (\angle(\vec{d}, \vec{q}))
$$

Polysemy and Context

- Document similarity on single word level:

Latent Semantic Indexing (LSI)

- Perform a low-rank approximation of document-term matrix (typical rank 100300)
- General idea
- Map documents (and terms) to a lowdimensional representation.
- Design a mapping such that the lowdimensional space reflects semantic associations (latent semantic space).
- Compute document similarity based on the inner product in this latent semantic space
\qquad

Latent Semantic Analysis

- Latent semantic space: illustrating

courtesy of Susan Dumais

Goals of LSI

- LSI takes documents that are semantically similar (= talk about the same topics), but are not similar in the vector space (because they use different words) and re-represents them in a reduced vector space in which they have higher similarity.
- Similar terms map to similar location in low dimensional space
- Noise reduction by dimension reduction

Performing the maps

- Each row and column of A gets mapped into the k-dimensional LSI space, by the SVD.
- Claim - this is not only the mapping with the best (Frobenius error) approximation to A, but in fact improves retrieval.
- A query q is also mapped into this space, by

$$
q_{k}=q^{T} U_{k} \Sigma_{k}^{-1}
$$

- Query NOT a sparse vector.

LSA Example						
A simp (binary) $\stackrel{+}{C}$	${ }^{\text {ex }}$	${ }^{\text {ple }}$	d_{3}	d_{4}	${ }^{\text {ent }}$	
ship	1	0	1	0	0	0
boat	0	1	0	0	0	0
ocean	1	1	0	0	0	0
wood	1	0	0	1	1	0
tree	0	0	0	1	0	1

LSA Example

- Example of $\mathrm{C}=\mathrm{U} \mathrm{\Sigma VT}$: The matrix U

U	1	2	3	4	5
ship	-0.44	-0.30	0.57	0.58	0.25
boat	-0.13	-0.33	-0.59	0.00	0.73
ocean	-0.48	-0.51	-0.37	0.00	-0.61
wood	-0.70	0.35	0.15	-0.58	0.16
tree	-0.26	0.65	-0.41	0.58	-0.09
					38

LSA Example

- Example of $\mathrm{C}=\mathrm{U} \mathrm{V} \mathrm{V}$: The matrix Σ

Σ	1	2	3	4	5
1	2.16	0.00	0.00	0.00	0.00
2	0.00	1.59	0.00	0.00	0.00
3	0.00	0.00	1.28	0.00	0.00
4	0.00	0.00	0.00	1.00	0.00
5	0.00	0.00	0.00	0.00	0.39

LSA Example: Reducing the dimension

U	1	2	3	4	5		
ship	-0.44	-0.30	0.00	0.00	0.00		
boat	-0.13	-0.33	0.00	0.00	0.00		
ocean	-0.48	-0.51	0.00	0.00	0.00		
wood	-0.70	0.35	0.00	0.00	0.00		
tree	-0.26	0.65	0.00	0.00	0.00		
Σ_{2}	1	2	3	4	5		
1	2.16	0.00	0.00	0.00	0.00		
2	0.00	1.59	0.00	0.00	0.00		
3	0.00	0.00	0.00	0.00	0.00		
4	0.00	0.00	0.00	0.00	0.00		
5	0.00	0.00	0.00	0.00	0.00		
V^{T}	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}	
1	-0.75	-0.28	-0.20	-0.45	-0.33	-0.12	
2	-0.29	-0.53	-0.19	0.63	0.22	0.41	
3	0.00	0.00	0.00	0.00	0.00	0.00	
4	0.00	0.00	0.00	0.00	0.00	0.00	
5	0.00	0.00	0.00	0.00	0.00	0.00	

Why the reduced dimension matrix is better

- Similarity of d2 and d3 in the original space: 0.
- Similarity of d2 and d3 in the reduced space: $0.52 * 0.28+0.36 * 0.16+0.72 *$
$0.36+0.12 * 0.20+-0.39 *-0.08 \approx 0.52$
- Typically, LSA increases recall and hurts precision

Empirical evidence

" Experiments on TREC 1/2/3 - Dumais

- Lanczos SVD code (available on netlib) due to Berry used in these experiments
- Running times of ~ one day on tens of thousands of docs [still an obstacle to use!]
- Dimensions - various values 250-350 reported. Reducing k improves recall. - (Under 200 reported unsatisfactory)
- Generally expect recall to improve - what about precision?

Empirical evidence

- Precision at or above median TREC precision
- Top scorer on almost 20\% of TREC topics
- Slightly better on average than straight vector spaces
- Effect of dimensionality

Dimensions	Precision
250	0.367
300	0.371
346	0.374

But why is this clustering?

- We've talked about docs, queries, retrieval and precision here.
- What does this have to do with clustering?
- Intuition: Dimension reduction through LSI brings together "related" axes in the vector space.

Simplistic picture

Some wild extrapolation

- The "dimensionality" of a corpus is the number of distinct topics represented in it.
- More mathematical wild extrapolation:
- if A has a rank k approximation of low Frobenius error, then there are no more than k distinct topics in the corpus.

LSI has many other applications

- In many settings in pattern recognition and retrieval, we have a feature-object matrix.
- For text, the terms are features and the docs are objects.
- Could be opinions and users ..
- This matrix may be redundant in dimensionality.
- Can work with low-rank approximation.
- If entries are missing (e.g., users' opinions), can recover if dimensionality is low.
- Powerful general analytical technique
- Close, principled analog to clustering methods.

