Introduction to Information Retrieval

CS276: Information Retrieval and Web Search

Christopher Manning and Pandu Nayak

Lecture 13: Latent Semantic Indexing

etrieval Ch. 18

Today's topic

Latent Semantic Indexing

- Term-document matrices are very large
- But the number of topics that people talk about is small (in some sense)
 - Clothes, movies, politics, ...
- Can we represent the termdocument space by a lower

Linear Algebra

Eigenvalues & Eigenvectors

Eigenvectors (for a square m×m matrix S)

$$\begin{array}{ccc} \mathbf{S}\mathbf{v} = \lambda\mathbf{v} & & & \\ & & & \\ \text{(right) eigenvector} & \text{eigenvalue} & & \\ \mathbf{v} \in \mathbb{R}^m \neq \mathbf{0} & & \lambda \in \mathbb{R} \end{array}$$

■ How many eigenvalues are there at most? $\mathbf{S}\mathbf{v} = \lambda\mathbf{v} \iff (\mathbf{S} - \lambda\mathbf{I})\,\mathbf{v} = \mathbf{0}$

only has a non-zero solution if $|\mathbf{S} - \lambda \mathbf{I}| = 0$

This is a mth order equation in λ which can have at most m distinct solutions (roots of the characteristic polynomial) - $\underline{\text{can be complex even though S is real.}}$

Sec. 18.1

Matrix-vector multiplication

$$S = \begin{bmatrix} 30 & 0 & 0 \\ 0 & 20 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{has} \quad \text{cor}$$

has eigenvalues 30, 20, 1 with corresponding eigenvectors

$$v_{1} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 7 \end{pmatrix} \qquad v_{2} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 7 \end{pmatrix} \qquad v_{3} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 7 \end{pmatrix}$$

On each eigenvector, S acts as a multiple of the identity matrix: but as a different multiple on each.

Any vector (say $x = \begin{pmatrix} 2 & 1 \\ 4 & 2 \end{pmatrix}$) can be viewed as a combination of the eigenvectors: $x = 2v_1 + 4v_2 + 6v_3$

Matrix-vector multiplication

 Thus a matrix-vector multiplication such as Sx (S, x as in the previous slide) can be rewritten in terms of the eigenvalues/

vectors:

$$SX = S(2v_1 + 4v_2 + 6v_3)$$

 $SX = 2Sv_1 + 4Sv_2 + 6Sv_3 = 2\lambda_1v_1 + 4\lambda_2v_2 + 6\lambda_3v_3$

 Even though x is an arbitrary vector, the action of S on x is determined by the eigenvalues/vectors.

 $Sx = 60v_1 + 80v_2 + 6v_3$

Matrix-vector multiplication

- Suggestion: the effect of "small" eigenvalues is small.
- If we ignored the smallest eigenvalue (1), then instead of

$$\begin{pmatrix} 60 \\ 80 \\ \vdots \\ 6 \end{pmatrix}$$
 we would get
$$\begin{pmatrix} 60 \\ 80 \\ 0 \end{pmatrix}$$

These vectors are similar (in cosine similarity, etc.)

Eigenvalues & Eigenvectors

For symmetric matrices, eigenvectors for distinct eigenvalues are orthogonal

$$SV_{\{1,2\}} = \lambda_{\{1,2\}} V_{\{1,2\}}, \text{ and } \lambda_1 \neq \lambda_2 \Rightarrow V_1 \cdot V_2 = 0$$

All eigenvalues of a real symmetric matrix are for complex λ , if $S - \lambda I$

All eigenvalues of a positive semidefinite matrix are non-negative

$$\forall w \in \Re^n, w^T Sw \ge 0$$
, then if $Sv = \lambda v \Rightarrow \lambda \ge 0$

Example

$$S = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
 Real, symmetric.

Then

$$S - \lambda I = \begin{bmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{bmatrix} \Rightarrow$$

$$|S - \lambda I| = (2 - \lambda)^2 - 1 = 0.$$

The eigenvalues are 1 and 3 (nonnegative,

The eigenvectors are orthogonal (and areal):

$$-1$$
 $\stackrel{?}{\downarrow}$ $\stackrel{?}{\downarrow}$ $\stackrel{?}{\downarrow}$

Eigen/diagonal Decomposition

• LetS $\in \mathbb{R}^{m \times m}$ be a **square** matrix with *m* linearly independent eigenvectors (a "non-defective" matrix)

• Theorem: Exists an eigen decomposition for $S = U\Lambda U$

(cf. matrix diagonalization theorem)

• Columns of **U** are the **eigenvectors** of **S** • Diagonal clamant of λ , λ is λ_{i+1} envalues of

Diagonal decomposition: why/ how

Let **U** have the eigenvectors as columns $U = \begin{bmatrix} v_1 & \dots & v_n \end{bmatrix}$

Then, SU can be written

$$SU = S \left[\begin{array}{cccc} v_1 & \dots & v_n \end{array} \right] = \left[\begin{array}{cccc} \lambda_1 v_1 & \dots & \lambda_n v_n \end{array} \right] = \left[\begin{array}{cccc} v_1 & \dots & v_n \end{array} \right] \left[\begin{array}{cccc} \lambda_1 & \dots & \lambda_n \end{array} \right]$$

Thus $SU=U\Lambda$, or $U^{-1}SU=\Lambda$

And $S=U\Lambda U^{-1}$.

Diagonal decomposition example

Recall
$$S = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
; $\lambda_1 = 1, \lambda_2 = 3$.

The eigenvectors
$$\begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
 $\begin{bmatrix} \frac{1}{2} \\ 1 \end{bmatrix}$ $U = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$

Inverting, we have
$$U^{-1} = \begin{bmatrix} 1/2 & -1/2 \\ 1/2 & 1/2 \end{bmatrix}$$
 Recall $UU^{-1} = 1$.

Then,
$$S=U \wedge U^{-1} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1/2 & -1/2 \\ 1/2 & 1/2 \end{bmatrix}$$

Example continued Let's divide U (and multiply U⁻¹) by $\sqrt{2}$ Then, $\mathbf{S} = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$ Q Λ (Q⁻¹= Q^T) Why? Stay tuned ...

Retrieval Sec. 18.1

Symmetric Eigen Decomposition

- If $\mathbf{S} \in \mathbb{R}^{m \times m}$ is a symmetric matrix:
- Theorem: There exists a (unique) eigen decomposition $S = Q \wedge Q^T$
- where Q is orthogonal:
 - $Q^{-1} = Q^{T}$
 - Columns of Q are normalized eigenvectors
 - Columns are orthogonal.
 - (everything is real)

Retrieval Sec. 18

Exercise

Examine the symmetric eigen decomposition, if any, for each of the following matrices:

$$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \quad \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad \begin{bmatrix} 1 & 2 \\ -2 & 3 \end{bmatrix} \quad \begin{bmatrix} 2 & 2 \\ 2 & 4 \end{bmatrix}$$

Time out!

- I came to this class to learn about text retrieval and mining, not to have my linear algebra past dredged up again ...
 - But if you want to dredge, Strang's Applied Mathematics is a good place to start.
- What do these matrices have to do with text?
- Recall M × N term-document matrices ...
- But everything so far needs square matricesso ...

Similarity → Clustering

- We can compute the similarity between two document vector representations x_i and x_j by x_ix_i^T
- Let $X = [x_1 ... x_N]$
- Then XX^T is a matrix of similarities
- X_{ii} is symmetric
- So $XX^T = Q\Lambda Q^T$
- So we can decompose this similarity space into a set of orthonormal basis vectors (given in Q) scaled by the eigenvalues in Λ

Petrieval

Sec. 18.2

Singular Value Decomposition

For an M \times N matrix **A** of rank r there exists a factorization (Singular Value Decomposition = SVD) as follows:

 $A = U \Sigma V$ $M \times M \quad M \times N \quad V \text{ is } N \times N$

(Not proven here.)

Approximation error

- How good (bad) is this approximation?
- It's the best possible, measured by the Frobenius norm of the error:

$$\min_{X:rank(X)=k} A-X$$

where the σ_i are ordered such that $\sigma_i \ge \sigma_{i+1}$. Suggests why Frobenius error drops as k increases.

Retrieval Sec. 18.3

SVD Low-rank approximation

- Whereas the term-doc matrix A may have M=50000, N=10 million (and rank close to 50000)
- We can construct an approximation A₁₀₀ with rank 100.
 - Of all rank 100 matrices, it would have the lowest Frobenius error.
- Great ... but why would we??
- Answer: Latent Semantic Indexing

C. Eckart, G. Young, The approximation of a matrix by another of lower rank. Psychometrika, 1, 211-218, 1936.

Retrieval

Latent Semantic

Detrievel

Sec. 18.4

What it is

- From term-doc matrix A, we compute the approximation A_k.
- There is a row for each term and a column for each doc in A_k
- Thus docs live in a space of k<<r dimensions
 - These dimensions are not the original axes
- But why?

rieval

Vector Space Model: Pros

- Automatic selection of index terms
- Partial matching of queries and documents (dealing with the case where no document contains all search terms)
- Ranking according to similarity score (dealing with large result sets)
- Term weighting schemes (improves retrieval performance)
- Various extensions
 - Document clustering
 - Relevance feedback (modifying query vector)
- Geometric foundation

Introduction to information

Problems with Lexical Semantics

- Ambiguity and association in natural language
 - Polysemy: Words often have a multitude of meanings and different types of usage (more severe in very heterogeneous collections).
 - The vector space model is unable to discriminate between different meanings of the same word.

$$\sin_{\text{true}}(d, q) < \cos(\angle(\vec{d}, \vec{q}))$$

Problems with Lexical Semantics

- Synonymy: Different terms may have an identical or a similar meaning (weaker: words indicating the same topic).
- No associations between words are made in the vector space representation.

$$\sin_{\text{true}}(d,q) > \cos(\angle(\vec{d},\vec{q}))$$

Sec. 18.4

Latent Semantic Indexing (LSI)

- Perform a low-rank approximation of document-term matrix (typical rank 100-300)
- General idea
 - Map documents (and terms) to a lowdimensional representation.
 - Design a mapping such that the lowdimensional space reflects semantic associations (latent semantic space).
 - Compute document similarity based on the inner product in this latent semantic space

Goals of LSI

- LSI takes documents that are semantically similar (= talk about the same topics), but are not similar in the vector space (because they use different words) and re-represents them in a reduced vector space in which they have higher similarity.
- Similar terms map to similar location in low dimensional space
- Noise reduction by dimension reduction

Performing the maps

- Each row and column of A gets mapped into the k-dimensional LSI space, by the SVD.
- Claim this is not only the mapping with the best (Frobenius error) approximation to A, but in fact improves retrieval.
- A query q is also mapped into this space, by

$$q_k = q^T U_k \Sigma_k^{-1}$$

Query NOT a sparse vector.

C-- 10 4

LSA Example

 A simple example term-document matrix (binary)

C	d_1	d_2	d_3	d_4	d_5	d_6
ship	1	0	1	0	0	0
boat	0	1	0	0	0	0
ocean	1	1	0	0	0	0
wood	1	0	0	1	1	0
tree	0	0	0	1	0	1

LSA Example

• Example of $C = U\Sigma VT$: The matrix U

U	1	2	3	4	5
ship	-0.44	-0.30	0.57	0.58	0.25
boat	-0.13	-0.33	-0.59	0.00	0.73
ocean	-0.48	-0.51	-0.37	0.00	-0.61
wood	-0.70	0.35	0.15	-0.58	0.16
tree	-0.26	0.65	-0.41	0.58	-0.09

38

LSA Example

• Example of C = U Σ VT: The matrix Σ

Σ	1	2	3	4	5
1	2.16	0.00	0.00	0.00	0.00
2	0.00	1.59	0.00	0.00	0.00
3	0.00	0.00	1.28	0.00	0.00
4	0.00	0.00	0.00	1.00	0.00
5	2.16 0.00 0.00 0.00 0.00	0.00	0.00	0.00	0.39

LSA Example

• Example of $C = U\Sigma V^T$: The matrix V^T

V^T	d_1	d_2	d_3	d_4	d_5	d_6
1	-0.75	-0.28	-0.20	-0.45	-0.33	-0.12
2	-0.29	-0.53	-0.19	0.63	0.22	0.41
3	0.28	-0.75	0.45	-0.20	0.12	-0.33
4	0.00	0.00	0.58	0.00	-0.58	0.58
5	-0.53	0.29	0.63	0.19	0.41	-0.22

40

LSA Example: Reducing the dimension

lim	e	ns	sic	n						
U			1	2	3	4	5			
ship	\top	-0.4	4 -	-0.30	0.00	0.00	0.00			
boat		-0.1	l3 -	-0.33	0.00	0.00	0.00			
ocear	۱	-0.4	- 81	-0.51	0.00	0.00	0.00			
wood		-0.7	70	0.35	0.00	0.00	0.00			
tree		-0.2	26	0.65	0.00	0.00	0.00			
Σ_2	1		2	3	4	5				
1	2.	16	0.00	0.00	0.00	0.00	_			
2	0.	00	1.59	0.00	0.00	0.00				
3	0.	00	0.00	0.00	0.00	0.00				
4	0.	00	0.00	0.00	0.00	0.00				
5	0.	00	0.00	0.00	0.00	0.00				
V^T		d_1		d_2	d_3	d ₄	d	5 de	i	
1	-	0.75	-0	.28 -	-0.20	-0.45	-0.3	3 -0.12	2	
2	-	0.29	- 0	.53 -	-0.19	0.63	0.2	2 0.41		
3	-	0.00	0	.00	0.00	0.00	0.0	0.00)	
4	-	0.00	0	.00	0.00	0.00	0.0	0.00)	
5		0.00	0	.00	0.00	0.00	0.0	0.00)	41

Original matrix C vs. reduced C_2 $= U\Sigma_2V^T$

C	d_1	d_2	d ₃	d_4	d_5	d_6
ship	1	0	1	0	0	0
ship boat	0	1	0	0	0	0
ocean wood tree	1	1	0	0	0	0
wood	1	0	0	1	1	0
tree	0	0	0	1	0	1
	'					
_	l _,		-1		-1	

		d_2				
ship	0.85	0.52	0.28	0.13	0.21	-0.08
boat	0.36	0.36	0.16	-0.20	-0.02	-0.18
ocean	1.01	0.72	0.36	-0.04	0.16	-0.21
wood	0.97	0.12	0.20	1.03	0.62	0.41
tree	0.12	0.72 0.12 -0.39	-0.08	0.90	0.41	0.49
						42

Why the reduced dimension matrix is better

- Similarity of d2 and d3 in the original space:
 0.
- Similarity of d2 and d3 in the reduced space: 0.52 * 0.28 + 0.36 * 0.16 + 0.72 * 0.36 + 0.12 * 0.20 + -0.39 * -0.08 ≈ 0.52
- Typically, LSA increases recall and hurts precision

43

trieval Sec. 18.4

Empirical evidence

- Experiments on TREC 1/2/3 Dumais
- Lanczos SVD code (available on netlib) due to Berry used in these experiments
 - Running times of ~ one day on tens of thousands of docs [still an obstacle to use!]
- Dimensions various values 250-350 reported. Reducing k improves recall.
 - (Under 200 reported unsatisfactory)
- Generally expect recall to improve what about precision?

Introduction to information Sec. 18.4 Retrieval

Empirical evidence

- Precision at or above median TREC precision
 - Top scorer on almost 20% of TREC topics
- Slightly better on average than straight vector spaces
- Effect of dimensionality

У	: Dimensions	Precision
	250	0.367
	300	0.371
	346	0.374

Failure modes

- Negated phrases
 - TREC topics sometimes negate certain query/terms phrases - precludes simple automatic conversion of topics to latent semantic space.
- Boolean queries
 - As usual, freetext/vector space syntax of LSI queries precludes (say) "Find any doc having to do with the following 5 companies"
- See Dumais for more.

ouction to information sec. 18.4

But why is this clustering?

- We've talked about docs, queries, retrieval and precision here.
- What does this have to do with clustering?
- Intuition: Dimension reduction through LSI brings together "related" axes in the vector space.

Some wild extrapolation

- The "dimensionality" of a corpus is the number of distinct topics represented in it.
- More mathematical wild extrapolation:
 - if A has a rank k approximation of low Frobenius error, then there are no more than k distinct topics in the corpus.

Resources

• IIR 18

 Scott Deerwester, Susan Dumais, George Furnas, Thomas Landauer, Richard Harshman. 1990. Indexing by latent semantic analysis. JASIS 41(6):391—407.

Retrieval

LSI has many other applications

- In many settings in pattern recognition and retrieval, we have a feature-object matrix.
 - For text, the terms are features and the docs are objects.
 - Could be opinions and users ...
 - This matrix may be redundant in dimensionality.
 - Can work with low-rank approximation.
 - If entries are missing (e.g., users' opinions), can recover if dimensionality is low.
- Powerful general analytical technique
 - Close, principled analog to clustering methods.