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Today’s topic
Latent Semantic Indexing

 Term-document matrices are very 
large

 But the number of topics that 
people talk about is small (in some 
sense)
Clothes, movies, politics, …

 Can we represent the term-
document space by a lower 

Ch. 18
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Eigenvalues & Eigenvectors
 Eigenvectors (for a square m×m matrix S)

 How many eigenvalues are there at most?

only has a non-zero solution if 
This is a mth order equation in λ which can have at 
most m distinct solutions (roots of the characteristic 
polynomial) – can be complex even though S is real.

eigenvalue(right) eigenvector

Example

Sec. 18.1
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Matrix-vector multiplication

has eigenvalues 30, 20, 1 with
corresponding eigenvectors

On each eigenvector, S acts as a multiple of the identity
matrix: but as a different multiple on each.

Any vector (say x=     ) can be viewed as a combination of
the eigenvectors:               x = 2v1 + 4v2 + 6v3

Sec. 18.1
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Matrix-vector multiplication
 Thus a matrix-vector multiplication such as 

Sx (S, x as in the previous slide) can be 
rewritten in terms of the eigenvalues/
vectors:

 Even though x is an arbitrary vector, the 
action of S on x is determined by the 
eigenvalues/vectors.

Sec. 18.1
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Matrix-vector multiplication
 Suggestion: the effect of “small” eigenvalues 

is small.
 If we ignored the smallest eigenvalue (1), 

then instead of

we would get

 These vectors are similar (in cosine 
similarity, etc.)

Sec. 18.1
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Eigenvalues & Eigenvectors
For symmetric matrices, eigenvectors for distinct
eigenvalues are orthogonal

All eigenvalues of a real symmetric matrix are 
real.

All eigenvalues of a positive semidefinite matrix
are non-negative

Sec. 18.1
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Plug in these values 
and solve for 
eigenvectors.

Example
 Let

 Then

 The eigenvalues are 1 and 3 (nonnegative, 
real). 

 The eigenvectors are orthogonal (and real):

Real, symmetric.

Sec. 18.1
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 Let                    be a square matrix with m 
linearly independent eigenvectors (a 
“non-defective” matrix)

 Theorem: Exists an eigen decomposition                      

 (cf. matrix diagonalization theorem)

 Columns of U are the eigenvectors of S
 Diagonal elements of     are eigenvalues of 

Eigen/diagonal Decomposition

diagonal
Unique 

for 
distinct 
eigen-
values

Sec. 18.1
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Diagonal decomposition: why/
how

Let U have the eigenvectors as columns:

Then, SU can be written

And S=UΛU–1.

Thus SU=UΛ, or U–1SU=Λ

Sec. 18.1
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Diagonal decomposition - 
example

Recall 

The eigenvectors                  and              form 

Inverting, we have

Then, S=UΛU–1 =

Recall
UU–1 =1.

Sec. 18.1
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Example continued
Let’s divide U (and multiply U–1) by  

Then, S=

Q (Q-1= QT )Λ

Why? Stay tuned …

Sec. 18.1
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 If                    is a symmetric matrix:
 Theorem: There exists a (unique) eigen 

decomposition
 where Q is orthogonal:

 Q-1= QT

 Columns of Q are normalized 
eigenvectors

 Columns are orthogonal.
 (everything is real)

Symmetric Eigen Decomposition

Sec. 18.1
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Exercise
 Examine the symmetric eigen 

decomposition, if any, for each of the 
following matrices:

Sec. 18.1
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Time out!
 I came to this class to learn about text 

retrieval and mining, not to have my linear 
algebra past dredged up again …
 But if you want to dredge, Strang’s Applied 

Mathematics is a good place to start.
 What do these matrices have to do with 

text?

 Recall M × N term-document matrices … 
 But everything so far needs square matrices 

– so …
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Similarity  Clustering
 We can compute the similarity between two 

document vector representations xi and xj 
by xixj

T

 Let X = [x1 … xN] 
 Then XXT is a matrix of similarities
 Xij is symmetric
 So XXT = QΛQT

 So we can decompose this similarity space 
into a set of orthonormal basis vectors 
(given in Q) scaled by the eigenvalues in Λ

17
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Singular Value Decomposition

M×M M×N V is N×N

For an M × N matrix A of rank r there exists a
factorization (Singular Value Decomposition = SVD)
as follows:

(Not proven here.)

Sec. 18.2



Introduction to Information 
Retrieval   

Singular Value Decomposition

 AAT = QΛQT

 AAT = (UΣVT)(UΣVT)T = (UΣVT)(VΣUT) = UΣ2UT 

M×M M×N V is N×N

The columns of U are orthogonal eigenvectors of 
AAT.The columns of V are orthogonal eigenvectors of ATA.

Singular values

Eigenvalues λ1 … λr of AAT are the eigenvalues of 
ATA.

Sec. 18.2
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Singular Value Decomposition
 Illustration of SVD dimensions and 

sparseness

Sec. 18.2
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SVD example

Let

Thus M=3, N=2. Its SVD is

Typically, the singular values arranged in decreasing order.

Sec. 18.2
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 SVD can be used to compute optimal low-
rank approximations.

 Approximation problem: Find Ak of rank k 
such that

Ak and X are both m×n matrices.
Typically, want k << r.

Low-rank Approximation

Frobenius norm

Sec. 18.3
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 Solution via SVD

Low-rank Approximation

set smallest r-k
singular values to zero

column notation: sum 
of rank 1 matrices

k

Sec. 18.3
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 If we retain only k singular values, and set 
the rest to 0, then we don’t need the matrix 
parts in color

 Then Σ is k×k, U is M×k, VT is k×N, and Ak 
is M×N 

 This is referred to as the reduced SVD
 It is the convenient (space-saving) and 

usual form for computational applications
 It’s what Matlab gives you

Reduced SVD

k

Sec. 18.3
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Approximation error
 How good (bad) is this approximation?
 It’s the best possible, measured by the 

Frobenius norm of the error:

where the σi are ordered such that σi ≥ σi+1.
Suggests why Frobenius error drops as k 

increases.

Sec. 18.3
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SVD Low-rank approximation
 Whereas the term-doc matrix A may have 

M=50000, N=10 million (and rank close to 
50000)

 We can construct an approximation A100 
with rank 100.
 Of all rank 100 matrices, it would have the 

lowest Frobenius error.
 Great … but why would we??
 Answer: Latent Semantic Indexing

C. Eckart, G. Young, The approximation of a matrix by another of lower rank. 
Psychometrika, 1, 211-218, 1936.

Sec. 18.3
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Latent Semantic 
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What it is
 From term-doc matrix A, we 

compute the approximation Ak.
 There is a row for each term and a 

column for each doc in Ak
 Thus docs live in a space of k<<r 

dimensions
 These dimensions are not the 

original axes
 But why?

Sec. 18.4
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Vector Space Model: Pros
 Automatic selection of index terms
 Partial matching of queries and documents 

(dealing with the case where no document contains all 
search terms)

 Ranking according to similarity score 
(dealing with large result sets)

 Term weighting schemes (improves retrieval 
performance)

 Various extensions
 Document clustering
 Relevance feedback (modifying query vector)

 Geometric foundation
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Problems with Lexical Semantics
 Ambiguity and association in natural 

language
 Polysemy: Words often have a multitude 

of meanings and different types of usage 
(more severe in very heterogeneous 
collections).

 The vector space model is unable to 
discriminate between different meanings 
of the same word.
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Problems with Lexical Semantics
 Synonymy: Different terms may 

have an identical or a similar 
meaning (weaker: words 
indicating the same topic).

 No associations between words 
are made in the vector space 
representation.
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Polysemy and Context
 Document similarity on single word level: 

polysemy and context

car
company

•••
dodge
ford

meaning 2

ring
jupiter

•••
space

voyagermeaning 1

…
saturn

...

…
planet

...

contribution to similarity, if 
used in 1st meaning, but not 
if in 2nd 
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Latent Semantic Indexing (LSI)
 Perform a low-rank approximation of 

document-term matrix (typical rank 100–
300)

 General idea
 Map documents (and terms) to a low-

dimensional representation.
 Design a mapping such that the low-

dimensional space reflects semantic 
associations (latent semantic space).

 Compute document similarity based on the 
inner product in this latent semantic space

Sec. 18.4
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Goals of LSI
 LSI takes documents that are semantically 

similar (= talk about the same topics), but 
are not similar in the vector space (because 
they use different words) and re-represents 
them in a reduced vector space in which 
they have higher similarity. 

 Similar terms map to similar location in low 
dimensional space

 Noise reduction by dimension reduction

Sec. 18.4
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Latent Semantic Analysis
 Latent semantic space: illustrating 

example

courtesy of Susan Dumais

Sec. 18.4
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Performing the maps
 Each row and column of A gets mapped into 

the k-dimensional LSI space, by the SVD.
 Claim – this is not only the mapping with 

the best (Frobenius error) approximation to 
A, but in fact improves retrieval.

 A query q is also mapped into this space, by

 Query NOT a sparse vector.

Sec. 18.4
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LSA Example
 A simple example term-document matrix 

(binary)

37
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LSA Example
 Example of C = UΣVT: The matrix U 

38
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LSA Example
 Example of C = UΣVT: The matrix Σ 

39
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LSA Example
 Example of C = UΣVT: The matrix VT 

40
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LSA Example: Reducing the 
dimension

41
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= UΣ2VT 

42
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Why the reduced dimension 
matrix is better
 Similarity of d2 and d3 in the original space: 

0. 
 Similarity of d2 and d3 in the reduced 

space: 0.52 ∗ 0.28 + 0.36 ∗ 0.16 + 0.72 ∗ 
0.36 + 0.12 ∗ 0.20 + −0.39 ∗ −0.08 ≈ 0.52 

 Typically, LSA increases recall and hurts 
precision

43
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Empirical evidence
 Experiments on TREC 1/2/3 – Dumais
 Lanczos SVD code (available on netlib) 

due to Berry used in these experiments
 Running times of ~ one day on tens of 

thousands of docs [still an obstacle to 
use!]

 Dimensions – various values 250-350 
reported.  Reducing k improves recall.
 (Under 200 reported unsatisfactory)

 Generally expect recall to improve – what 
about precision?

Sec. 18.4
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Empirical evidence
 Precision at or above median TREC 

precision
 Top scorer on almost 20% of TREC topics

 Slightly better on average than straight 
vector spaces

 Effect of dimensionality:
Dimensions Precision
250 0.367
300 0.371
346 0.374

Sec. 18.4
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Failure modes
 Negated phrases

 TREC topics sometimes negate certain 
query/terms phrases – precludes simple 
automatic conversion of topics to latent 
semantic space.

 Boolean queries
 As usual, freetext/vector space syntax of 

LSI queries precludes (say) “Find any doc 
having to do with the following 5 
companies”

 See Dumais for more.

Sec. 18.4
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But why is this clustering?
 We’ve talked about docs, queries, 

retrieval and precision here.
 What does this have to do with 

clustering?
 Intuition: Dimension reduction 

through LSI brings together 
“related” axes in the vector space.

Sec. 18.4
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Simplistic picture
Topic 1

Topic 2

Topic 3
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Some wild extrapolation
 The “dimensionality” of a corpus is 

the number of distinct topics 
represented in it.

 More mathematical wild 
extrapolation:
 if A has a rank k approximation of 

low Frobenius error, then there are 
no more than k distinct topics in the 
corpus.
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LSI has many other applications
 In many settings in pattern recognition and 

retrieval, we have a feature-object matrix.
 For text, the terms are features and the docs are 

objects.
 Could be opinions and users …
 This matrix may be redundant in dimensionality.
 Can work with low-rank approximation.
 If entries are missing (e.g., users’ opinions), can 

recover if dimensionality is low.
 Powerful general analytical technique

 Close, principled analog to clustering methods.
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Resources
 IIR 18
 Scott Deerwester, Susan Dumais, 

George Furnas, Thomas Landauer, 
Richard Harshman.  1990.  Indexing 
by latent semantic analysis. JASIS 
41(6):391—407.


