Introduction to Information Retrieval

CS276: Information Retrieval and Web Search Christopher Manning and Pandu Nayak Lecture 13: Latent Semantic Indexing

Today's topic

Latent Semantic Indexing

- Term-document matrices are very large
- But the number of topics that people talk about is small (in some sense)

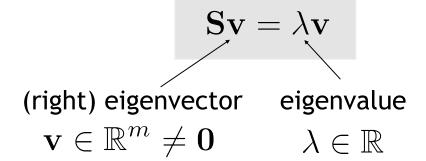
Clothes, movies, politics, …

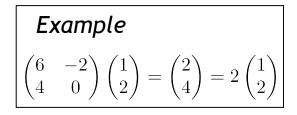
Can we represent the termdocument space by a lower

Linear Algebra

Eigenvalues & Eigenvectors

Eigenvectors (for a square *m×m* matrix S)





• How many eigenvalues are there at most? $\mathbf{Sv} = \lambda \mathbf{v} \iff (\mathbf{S} - \lambda \mathbf{I}) \mathbf{v} = \mathbf{0}$

only has a non-zero solution if $|\mathbf{S} - \lambda \mathbf{I}| = 0$

This is a *m*th order equation in λ which can have at most *m* distinct solutions (roots of the characteristic polynomial) - <u>can be complex even though S is real.</u>

Matrix-vector multiplication

$$S = \begin{bmatrix} 30 & 0 & 0 \\ 0 & 20 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

has eigenvalues 30, 20, 1 with corresponding eigenvectors

$$v_{1} = \begin{pmatrix} 1 \\ \dot{0} \\ \dot{0} \\ \dot{0} \\ \dot{0} \\ \dot{1} \end{pmatrix} \qquad v_{2} = \begin{pmatrix} 0 \\ \dot{1} \\ \dot{1} \\ \dot{1} \\ \dot{0} \\ \dot{1} \end{pmatrix} \qquad v_{3} = \begin{pmatrix} 0 \\ \dot{0} \\ \dot{0} \\ \dot{0} \\ \dot{1} \\ \dot{1} \\ \dot{1} \end{pmatrix}$$

On each eigenvector, S acts as a multiple of the identity matrix: but as a different multiple on each.

Any vector (say $x = \begin{pmatrix} 2 & \frac{1}{4} \\ 4 & \frac{1}{4} \end{pmatrix}$ can be viewed as a combination of the eigenvectors: $\begin{pmatrix} 2 & \frac{1}{4} \\ 4 & \frac{1}{4} \end{pmatrix}$ $x = 2v_1 + 4v_2 + 6v_3$

Matrix-vector multiplication

• Thus a matrix-vector multiplication such as Sx (S, x as in the previous slide) can be rewritten in terms of the eigenvalues/ vectors: $V = \frac{1}{2}v_{1} + 4v_{2} + 6v_{3}$

$$S_{x} = 2S_{1} + 4S_{2} + 6S_{3} = 2\lambda_{1}V_{1} + 4\lambda_{2}V_{2} + 6\lambda_{3}V_{3}$$

$$Sx = 60v_1 + 80v_2 + 6v_3$$

Even though x is an arbitrary vector, the action of S on x is determined by the eigenvalues/vectors.

Matrix-vector multiplication

- Suggestion: the effect of "small" eigenvalues is small.
- If we ignored the smallest eigenvalue (1), then instead of

$$\begin{array}{ccc}
60\\80\\ \vdots\\6\end{array} & \text{we would get} \\ \end{array} \\ \begin{array}{c}6\\80\\6\end{array} \\ \end{array} \end{array}$$

These vectors are similar (in cosine similarity, etc.)

Eigenvalues & Eigenvectors

For symmetric matrices, eigenvectors for distinct eigenvalues are **orthogonal**

$$S_{\{1,2\}} = \lambda_{\{1,2\}} V_{\{1,2\}}, \text{ and } \lambda_1 \neq \lambda_2 \Longrightarrow V_1 \bullet V_2 = 0$$

All eigenvalues of a real symmetric matrix are real. for complex λ , if $S - \lambda I$

All eigenvalues of a positive semidefinite matrix are **non-negative** $\forall w \in \Re^n, w^T Sw \ge 0$, then if $Sv = \lambda v \Rightarrow \lambda \ge 0$

Example

• Let
$$S = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
 Real, symmetric.

• Then
$$S - \lambda I = \begin{bmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{bmatrix} \Rightarrow$$
$$|S - \lambda I| = (2 - \lambda)^2 - 1 = 0.$$

- The eigenvalues are 1 and 3 (nonnegative, real).
- The eigenvectors are orthogonal (and real): $-1 \dot{\vec{j}} \begin{pmatrix} 1 \dot{\vec{j}} \\ 1 \dot{\vec{j}} \end{pmatrix}$ orthogonal (and real): and solve for eigenvectors.

for

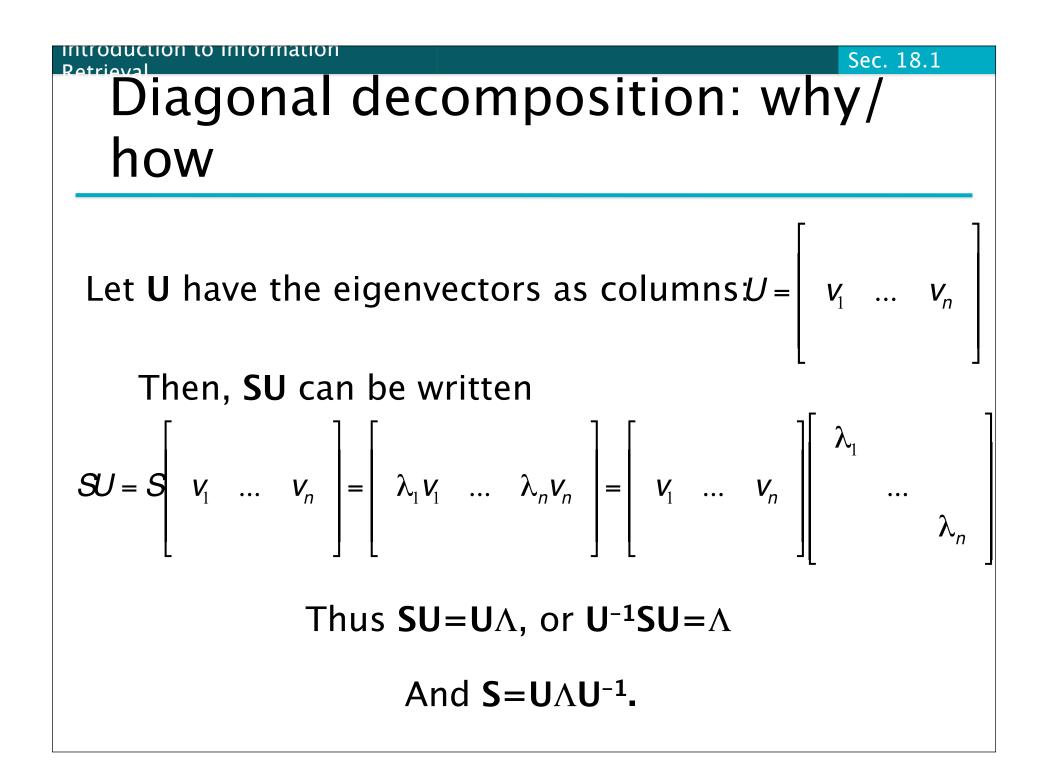
values

Eigen/diagonal Decomposition

- Let $\mathbf{S} \in \mathbb{R}^{m imes m}$ be a **square** matrix with *m* linearly independent eigenvectors (a "non-defective" matrix) Unique
- Theorem: Exists an eigen decomposition $S = U\Lambda U^{-1}$ distinct eigen-

(cf. matrix diagonalization theorem)

 Columns of U are the eigenvectors of S • Diagonal alements of $\lambda_i \geq \lambda_{i+1}$ envalues of



introduction to information

Retrieval

Diagonal decomposition – example

Recall
$$S = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}; \lambda_1 = 1, \lambda_2 = 3.$$

The eigenvector $\begin{bmatrix} 1 & 1 \\ -1 & j \end{bmatrix}$ $\begin{bmatrix} \ln d \\ 1 & j \end{bmatrix}$ $U = \begin{bmatrix} 1 & 1 \\ 0 & m \\ -1 & 1 \end{bmatrix}$
Inverting, we have $U^{-1} = \begin{bmatrix} 1/2 & -1/2 \\ 1/2 & 1/2 \end{bmatrix}$ $\begin{bmatrix} \operatorname{Recall} \\ UU^{-1} = 1. \end{bmatrix}$
Then, $S = U \wedge U^{-1} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1/2 & -1/2 \\ 1/2 & 1/2 \end{bmatrix}$

Sec. 18.1

Example continued Let's divide **U** (and multiply U^{-1}) by $\sqrt{2}$ Then, $\mathbf{S} = \begin{cases} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{cases} \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$ $\Lambda \qquad (\mathbf{Q}^{-1} = \mathbf{Q}^{\mathsf{T}})$ Why? Stay tuned

Symmetric Eigen Decomposition

- If $\mathbf{S} \in \mathbb{R}^{m \times m}$ is a symmetric matrix:
- Theorem: There exists a (unique) eigen decomposition $S = Q \Lambda Q^T$
- where Q is orthogonal:
 - $\mathbf{Q}^{-1} = \mathbf{Q}^{\mathsf{T}}$
 - Columns of **Q** are normalized eigenvectors
 - Columns are orthogonal.
 - (everything is real)

Exercise

 Examine the symmetric eigen decomposition, if any, for each of the following matrices:

$$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} 2 & 2 \\ 2 & 4 \end{bmatrix}$$

Time out!

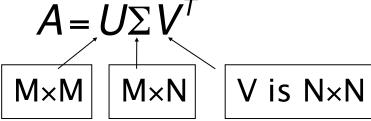
- I came to this class to learn about text retrieval and mining, not to have my linear algebra past dredged up again ...
 - But if you want to dredge, Strang's Applied Mathematics is a good place to start.
- What do these matrices have to do with text?
- Recall M × N term-document matrices …
- But everything so far needs square matrices
 so ...

Similarity \rightarrow Clustering

- We can compute the similarity between two document vector representations x_i and x_j by x_ix_j^T
- Let $X = [x_1 \dots x_N]$
- Then XX^T is a matrix of similarities
- X_{ij} is symmetric
- So $XX^{\mathsf{T}} = Q \wedge Q^{\mathsf{T}}$
- So we can decompose this similarity space into a set of orthonormal basis vectors (given in Q) scaled by the eigenvalues in Λ

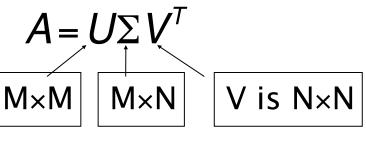
Singular Value Decomposition

For an $M \times N$ matrix A of rank r there exists a factorization (Singular Value Decomposition = SVD) as follows:



(Not proven here.)

Singular Value Decomposition



•
$$AA^{T} = Q \Lambda Q^{T}$$

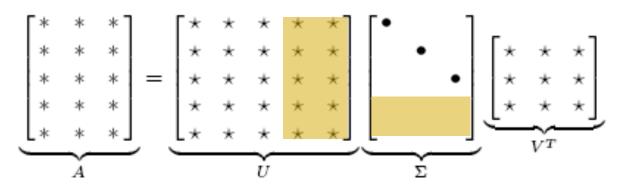
• $AA^{T} = (U\Sigma V^{T})(U\Sigma V^{T})^{T} = (U\Sigma V^{T})(V\Sigma U^{T}) = U\Sigma^{2}U^{T}$

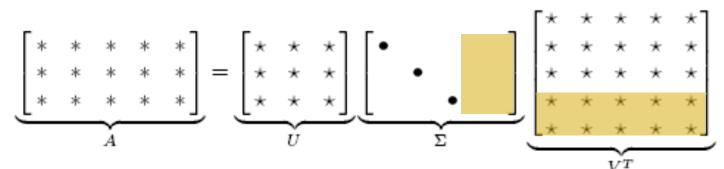
The columns of **U** are orthogonal eigenvectors of **A**A^T columns of **V** are orthogonal eigenvectors of **A**^TA. Eigenvalues $\lambda_1 \dots \lambda_r$ of **A**A^T are the eigenvalues of **A**^TA. $\sigma_i = \sqrt{\lambda_i}$

 $\Sigma = diag(\sigma_1 ... \sigma_r)$ Singular values

Singular Value Decomposition

 Illustration of SVD dimensions and sparseness





SVD example

Let
$$A = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Thus M=3, N=2. Its SVD is
 $\begin{bmatrix} 0 & 2/\sqrt{6} & 1/\sqrt{3} \\ 1/\sqrt{2} & -1/\sqrt{6} & 1/\sqrt{3} \\ 1/\sqrt{2} & 1/\sqrt{6} & -1/\sqrt{3} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & \sqrt{3} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix}$

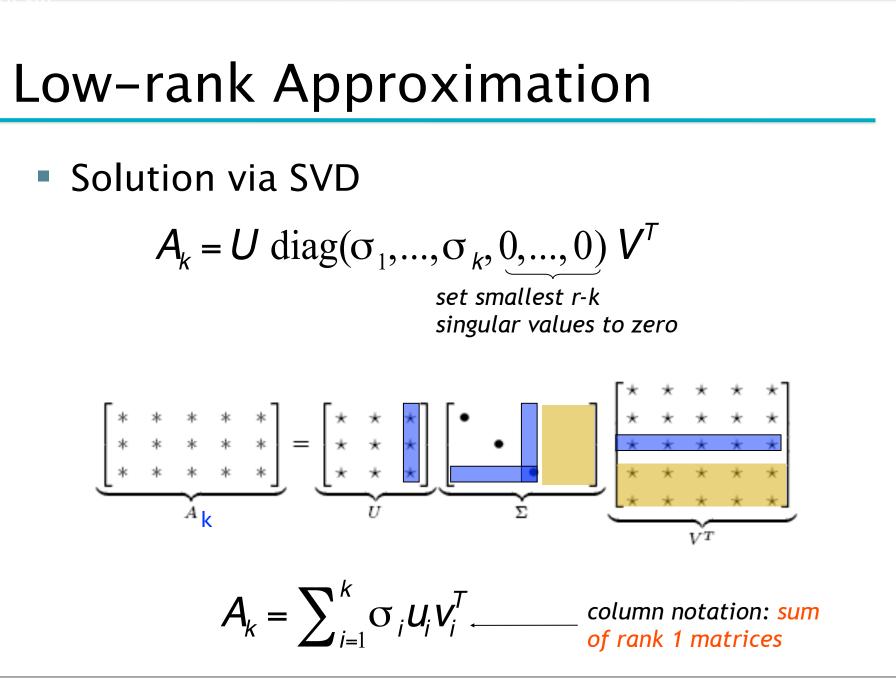
Typically, the singular values arranged in decreasing order.

Low-rank Approximation

- SVD can be used to compute optimal lowrank approximations.

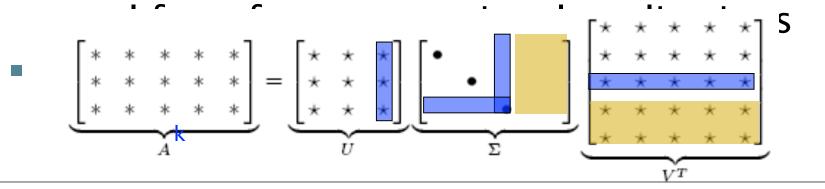
$$A||_F \equiv \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2}.$$

 A_k and X are both m×n matrices. Typically, want k << r.



Reduced SVD

- If we retain only k singular values, and set the rest to 0, then we don't need the matrix parts in color
- Then Σ is k×k, U is M×k, V^T is k×N, and A_k is M×N
- This is referred to as the reduced SVD
- It is the convenient (space-saving) and



Approximation error

- How good (bad) is this approximation?
- It's the best possible, measured by the Frobenius norm of the error:

$$\min_{X:rank(X)=k} A - X$$

where the σ_i are ordered such that $\sigma_i \ge \sigma_{i+1}$. Suggests why Frobenius error drops as k increases.

SVD Low-rank approximation

- Whereas the term-doc matrix A may have M=50000, N=10 million (and rank close to 50000)
- We can construct an approximation A₁₀₀ with rank 100.
 - Of all rank 100 matrices, it would have the lowest Frobenius error.
- Great ... but why would we??
- Answer: Latent Semantic Indexing

C. Eckart, G. Young, *The approximation of a matrix by another of lower rank*. Psychometrika, 1, 211-218, 1936.

Retrieval

Latent Semantic

What it is

- From term-doc matrix A, we compute the approximation A_k.
- There is a row for each term and a column for each doc in A_k
- Thus docs live in a space of k<<r dimensions
 - These dimensions are not the original axes
- But why?

Vector Space Model: Pros

- Automatic selection of index terms
- Partial matching of queries and documents (dealing with the case where no document contains all search terms)
- Ranking according to similarity score (dealing with large result sets)
- Term weighting schemes (improves retrieval performance)
- Various extensions
 - Document clustering
 - Relevance feedback (modifying query vector)
- Geometric foundation

Problems with Lexical Semantics

- Ambiguity and association in natural language
 - Polysemy: Words often have a multitude of meanings and different types of usage (more severe in very heterogeneous collections).
 - The vector space model is unable to discriminate between different meanings of the same word.

 $\operatorname{sim}_{\operatorname{true}}(d,q) < \cos(\angle(\vec{d},\vec{q}))$

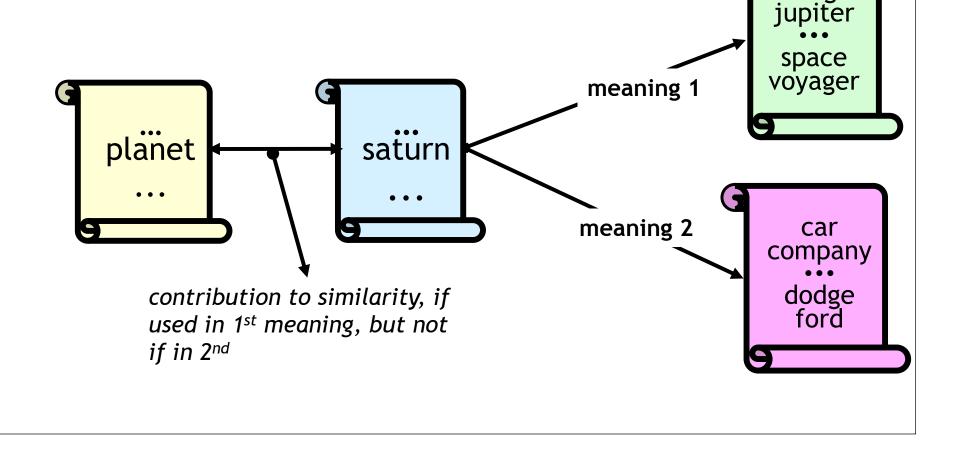
Problems with Lexical Semantics

- Synonymy: Different terms may have an identical or a similar meaning (weaker: words indicating the same topic).
- No associations between words are made in the vector space representation.

$$sim_{true}(d,q) > \cos(\angle(\vec{d},\vec{q}))$$

Polysemy and Context

 Document similarity on single word level: polysemy and context



ring

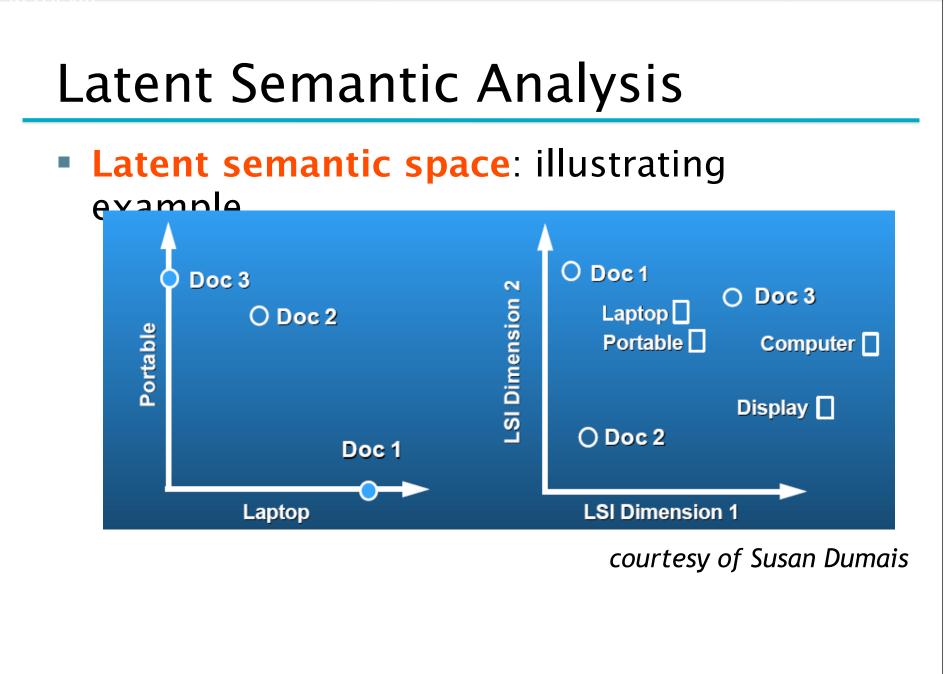
Latent Semantic Indexing (LSI)

- Perform a low-rank approximation of document-term matrix (typical rank 100-300)
- General idea
 - <u>Map documents (and terms) to a low-</u> <u>dimensional representation.</u>
 - Design a mapping such that the lowdimensional space reflects semantic associations (latent semantic space).
 - Compute document similarity based on the inner product in this latent semantic space

Goals of LSI

- LSI takes documents that are semantically similar (= talk about the same topics), but are not similar in the vector space (because they use different words) and re-represents them in a reduced vector space in which they have higher similarity.
- Similar terms map to similar location in low dimensional space
- Noise reduction by dimension reduction

Sec. 18.4



Performing the maps

- Each row and column of A gets mapped into the k-dimensional LSI space, by the SVD.
- Claim this is not only the mapping with the best (Frobenius error) approximation to A, but in fact improves retrieval.
- A query q is also mapped into this space, by

$$\boldsymbol{q}_{k} = \boldsymbol{q}^{T}\boldsymbol{U}_{k}\boldsymbol{\Sigma}_{k}^{-1}$$

Query NOT a sparse vector.

 A simple example term-document matrix (binary)

С	d_1	d_2	<i>d</i> 3	d_4	d_5	d_6
ship	1	0	1	0	0	0
boat	0	1	0	0	0	0
ocean	1	1	0	0	0	0
wood	1	0	0	1	1	0
tree	0	0	0	1	0	1

• Example of $C = U\Sigma VT$: The matrix U

U	1	2	3	4	5
ship	-0.44	-0.30	0.57	0.58	0.25
boat	-0.13	-0.33	-0.59	0.00	0.73
ocean	-0.48	-0.51	-0.37	0.00	-0.61
wood	-0.70	0.35	0.15	-0.58	0.16
tree	-0.26	0.65	-0.41	0.58	-0.09

• Example of $C = U\Sigma VT$: The matrix Σ

Σ	1	2	3	4	5
1	2.16	0.00	0.00	0.00	0.00
2	0.00	1.59	0.00	0.00	0.00
3	0.00	0.00	1.28	0.00	0.00
4	0.00	0.00	0.00	1.00	0.00
5	0.00	0.00	0.00 0.00 1.28 0.00 0.00	0.00	0.39

• Example of $C = U\Sigma V^T$: The matrix V^T

V^{T}	d_1	d_2	<i>d</i> 3	d_4	d_5	d_6
1	-0.75	-0.28	-0.20	-0.45	-0.33	-0.12
2	-0.29	-0.53	-0.19	0.63	0.22	0.41
3	0.28	-0.75	0.45	-0.20	0.12	-0.33
4	0.00	0.00	0.58	0.00	-0.58	0.58
5	-0.53	0.29	0.63	0.19	0.41	-0.22

introduction to information

Retrieval

LSA Example: Reducing the dimension

U		1	2	3	4	5	
ship	-0.4	14 —	0.30	0.00	0.00	0.00	
boat	-0.	13 —	0.33	0.00	0.00	0.00	
ocean	n │ -0.4	48 —	0.51	0.00	0.00	0.00	
wood	-0.7	70	0.35	0.00	0.00	0.00	
tree	-0.2	26	0.65	0.00	0.00	0.00	
Σ_2	1	2	3	4	5		
1	2.16	0.00	0.00	0.00	0.00	_	
2	0.00	1.59	0.00	0.00	0.00		
3	0.00	0.00	0.00	0.00	0.00		
4	0.00	0.00	0.00	0.00	0.00		
5	0.00	0.00	0.00	0.00	0.00		
V^{T}	<i>d</i> ₁		d 2	d ₃	d_4	d_5	d_6
1	-0.75	-0 .	28 –	0.20	-0.45	-0.33	-0.12
2	-0.29	-0 .	53 –	0.19	0.63	0.22	0.41
3	0.00	0.	00	0.00	0.00	0.00	0.00
4	0.00	0.	00	0.00	0.00	0.00	0.00
5	0.00	0.	00	0.00	0.00	0.00	0.00

41

introduction to information

$\stackrel{\text{Retri}}{=} U\Sigma_2 V^{\mathsf{T}}$

С	<i>d</i> 1	d ₂	d ₃	d_4	d_5	d ₆		
ship	1	0	1	0	0	0		
boat	0	1	0	0	0	0		
ocean	1	1	0	0	0	0		
wood	1	0	0	1	1	0		
tree	0	0	0	1	0	1		
	•							
C_2	d1	L	d ₂		d 3	d_4	d_5	d_6
ship	0.85	5	0.52		0.28	0.13	0.21	-0.08
boat	0.36	5	0.36	(0.16	-0.20	-0.02	-0.18
ocean	1.01	L	0.72	(0.36	-0.04	0.16	-0.21
wood	0.97	7	0.12	(0.20	1.03	0.62	0.41
tree	0.12	2 –	-0.39		80.0	0.90	0.41	0.49
								42

introduction to informat

Why the reduced dimension matrix is better

- Similarity of d2 and d3 in the original space:
 0.
- Similarity of d2 and d3 in the reduced space: 0.52 * 0.28 + 0.36 * 0.16 + 0.72 * 0.36 + 0.12 * 0.20 + -0.39 * -0.08 ≈ 0.52
- Typically, LSA increases recall and hurts precision

Empirical evidence

- Experiments on TREC 1/2/3 Dumais
- Lanczos SVD code (available on netlib) due to Berry used in these experiments
 - Running times of ~ one day on tens of thousands of docs [still an obstacle to use!]
- Dimensions various values 250–350 reported. Reducing k improves recall.
 - (Under 200 reported unsatisfactory)
- Generally expect recall to improve what about precision?

Empirical evidence

- Precision at or above median TREC precision
 - Top scorer on almost 20% of TREC topics
- Slightly better on average than straight vector spaces
- Effect of dimensionality

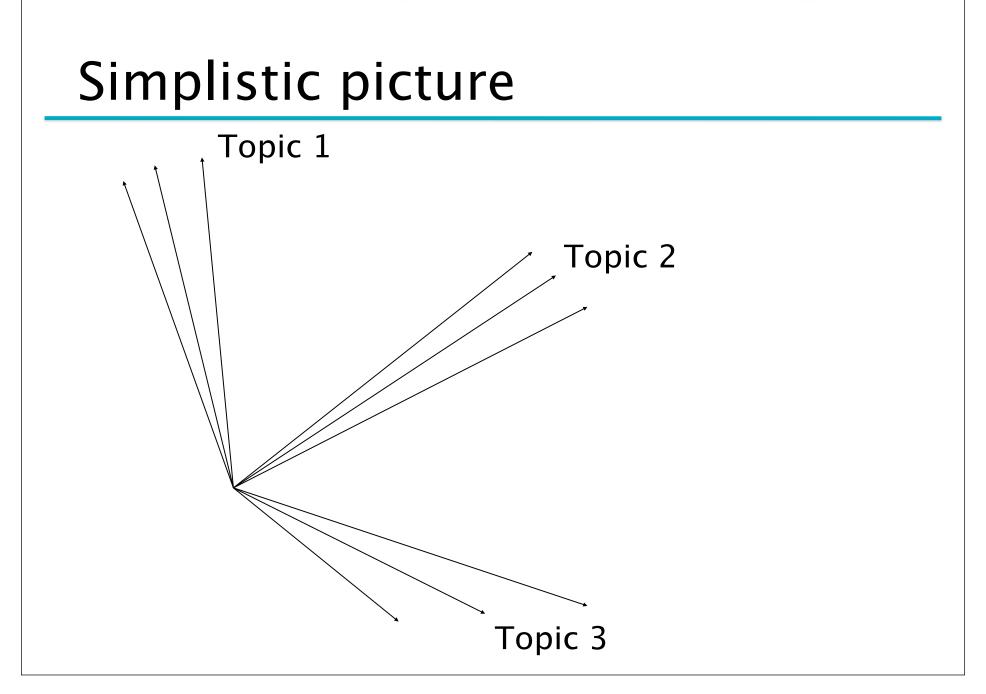
/	: Dimensions	Precision
	250	0.367
	300	0.371
	346	0.374

Failure modes

- Negated phrases
 - TREC topics sometimes negate certain query/terms phrases – precludes simple automatic conversion of topics to latent semantic space.
- Boolean queries
 - As usual, freetext/vector space syntax of LSI queries precludes (say) "Find any doc having to do with the following 5 companies"
- See Dumais for more.

But why is this clustering?

- We've talked about docs, queries, retrieval and precision here.
- What does this have to do with clustering?
- Intuition: Dimension reduction through LSI brings together "related" axes in the vector space.



Some wild extrapolation

- The "dimensionality" of a corpus is the number of distinct topics represented in it.
- More mathematical wild extrapolation:
 - if A has a rank k approximation of low Frobenius error, then there are no more than k distinct topics in the corpus.

LSI has many other applications

- In many settings in pattern recognition and retrieval, we have a feature-object matrix.
 - For text, the terms are features and the docs are objects.
 - Could be opinions and users ...
 - This matrix may be redundant in dimensionality.
 - Can work with low-rank approximation.
 - If entries are missing (e.g., users' opinions), can recover if dimensionality is low.
- Powerful general analytical technique
 - Close, principled analog to clustering methods.

Resources

IIR 18

 Scott Deerwester, Susan Dumais, George Furnas, Thomas Landauer, Richard Harshman. 1990. Indexing by latent semantic analysis. JASIS 41(6):391-407.