

ntroduction to Information Retrieval

Ch. 13

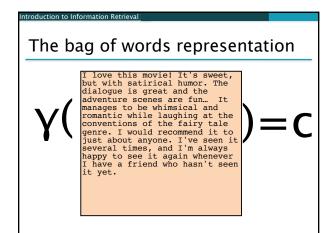
Classification Methods (3)

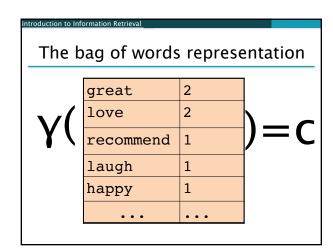
- Supervised learning
 - Naive Bayes (simple, common) see video, cs229
 - k-Nearest Neighbors (simple, powerful)
 - Support-vector machines (newer, generally more powerful)
 - Decision trees → random forests → gradient-boosted decision trees (e.g., xgboost)
 - ... plus many other methods
 - No free lunch: need hand-classified training data
 - But data can be built up by amateurs
- Many commercial systems use a mix of methods

troduction to Information Retrieval

Features

- Supervised learning classifiers can use any sort of feature
 - URL, email address, punctuation, capitalization, dictionaries, network features
- In the simplest bag of words view of documents
 - We use only word features
 - we use **all** of the words in the text (not a subset)





ntroduction to Information Retrieva

Sec.13.

Feature Selection: Why?

- Text collections have a large number of features
 - 10,000 1,000,000 unique words ... and more
- Selection may make a particular classifier feasible
 - Some classifiers can't deal with 1,000,000 features
- · Reduces training time
 - Training time for some methods is quadratic or worse in the number of features
- · Makes runtime models smaller and faster
- Can improve generalization (performance)
 - Eliminates noise features
 - Avoids overfitting

ntroduction to Information Retrieva

Feature Selection: Frequency

- The simplest feature selection method:
 - Just use the commonest terms
 - No particular foundation
 - But it make sense why this works
 They're the words that can be well-estimated
 - and are most often available as evidence
 In practice, this is often 90% as good as better methods
- Smarter feature selection:
 - chi-squared, etc.

ntroduction to Information Retrieval

Naïve Bayes: See *IIR* 13 or cs124 lecture on Coursera or cs229

 Classify based on prior weight of class and conditional parameter for what each word says:

$$c_{NB} = \underset{c_{j} \in C}{\operatorname{argmax}} \left[\log P(c_{j}) + \sum_{i \in positions} \log P(x_{i} \mid c_{j}) \right]$$

Training is done by counting and dividing:

$$P(c_j) \leftarrow \frac{N_{c_j}}{N} \qquad P(x_k \mid c_j) \leftarrow \frac{T_{c_j x_k} + \alpha}{\sum_{x_i \in V} [T_{c_j x_i} + \alpha]}$$

Don't forget to smooth

troduction to Information Retrieval

SpamAssassin

- Naïve Bayes has found a home in spam filtering
 - Paul Graham's A Plan for Spam
 - Widely used in spam filters
 - But many features beyond words:
 - black hole lists, etc.
 - particular hand-crafted text patterns

roduction to Information Retrieva

SpamAssassin Features:

- Basic (Naïve) Bayes spam probability
- Mentions: Generic Viagra
- Regex: millions of (dollar) ((dollar) NN,NNN,NNN.NN)
- Phrase: impress ... girl
- Phrase: 'Prestigious Non-Accredited Universities'
- From: starts with many numbers
- Subject is all capitals
- HTML has a low ratio of text to image area
- Relay in RBL, http://www.mailabuse.com/enduserinfo_rbl.html
- RCVD line looks faked
- http://spamassassin.apache.org/tests_3_3_x.html

roduction to Information Retriev

Naive Bayes is Not So Naive

- Very fast learning and testing (basically just count words)
- Low storage requirements
- Very good in domains with many equally important features
- More robust to irrelevant features than many learning methods

Irrelevant features cancel out without affecting results

ntroduction to Information Retrieva

Naive Bayes is Not So Naive

- More robust to concept drift (changing class definition over time)
- Naive Bayes won 1st and 2nd place in KDD– CUP 97 competition out of 16 systems

Goal: Financial services industry direct mail response prediction: Predict if the recipient of mail will actually respond to the advertisement - 750,000 records.

A good dependable baseline for text classification (but not the best)!

Introduction to Information Retrieva

Sec.13.6

Evaluating Categorization

- Evaluation must be done on test data that are independent of the training data
 - Sometimes use cross-validation (averaging results over multiple training and test splits of the overall data)
- Easy to get good performance on a test set that was available to the learner during training (e.g., just memorize the test set)

Evaluating Categorization

- Measures: precision, recall, F1, classification accuracy
- Classification accuracy: r/n where n is the total number of test docs and r is the number of test docs correctly classified

WebKB Experiment (1998)

- Classify webpages from CS departments into:
 - student, faculty, course, project
- Train on ~5,000 hand-labeled web pages
 - Cornell, Washington, U.Texas, Wisconsin
- Crawl and classify a new site (CMU) using Naïve Bayes

Results	Student	Faculty	Person	Project	Course	Departmt	
Extracted	180	66	246	99	28	1	
Correct	130	28	194	72	25	1	
Accuracy:	72%	42%	79%	73%	89%	100%	

Fact	Faculty				Students			Courses			
associate	associate 0.00417			resume	0	0.00516		homework		0.0041	3
chair	chair 0.00303 member 0.00288 ph 0.00287 director 0.00282 fax 0.00279			advisor	0	0.00456		syllabus		0.0039	9
member				student 0.00387			assignments		0.0038	8	
рħ				working	0.00361 0.00359 0.00355			exam		0.0038	5
director				stuff			grading		0.0038	1	
fax				links				midterm		0.0037	4
journal	0.00	271		homepage	0	.00345		pm		0.0037	1
recent	0.00	260		interests	0	.00332		instructor		0.0037	0
received	0.00	258		personal	0	.00332		due		0.0036	4
award	0.00250			favorite	0.00310			final	0.003		5
Depa	Departments			Research Projects				Others			
departme	ıtal	0.01246		investigato	18	0.00256		type	0.0	00164	
colloquia		0.01076		group		0.00250		jan	0.0	00148	
epartment	:	0.01045		members		0.00242		enter	0.0	00145	
seminars		0.00997		researchers	0.00241			random	0.00142		
schedules		0.00879		laboratory		0.00238		program	0.0	00136	
webmaste	г	0.00879		develop	0.00201			net	0.00128		
events		0.00826		related		0.00200		time	0.0	00128	
facilities		0.00807		агра		0.00187		format	0.0	00124	
eople		0.00772		affiliated	0.00184		İ	access	0.00117		
postgradu	ate	0.00764		project		0.00183		begin	0.0	00116	

Remember: Vector Space Representation

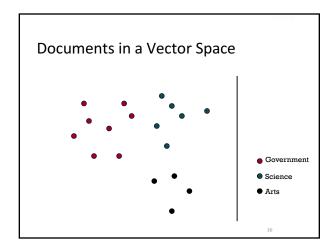
- Each document is a vector, one component for each term (= word).
- Normally normalize vectors to unit length.
- High-dimensional vector space:
- Terms are axes
- 10,000+ dimensions, or even 100,000+
- Docs are vectors in this space

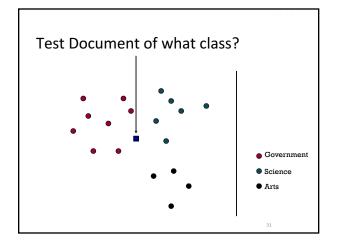
- How can we do classification in this space?

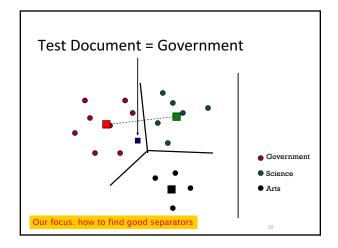
noducion to mormation retrieval

Classification Using Vector Spaces

- In vector space classification, training set corresponds to a labeled set of points (equivalently, vectors)
- Premise 1: Documents in the same class form a contiguous region of space
- Premise 2: Documents from different classes don't overlap (much)
- Learning a classifier: build surfaces to delineate classes in the space







Definition of centroid

$$\vec{\mu}(c) = \frac{1}{|D_c|} \sum_{d \in D_c} \vec{v}(d)$$

- Where D_c is the set of all documents that belong to class c and v(d) is the vector space representation of
- Note that centroid will in general not be a unit vector even when the inputs are unit vectors.

Rocchio classification

- Rocchio forms a simple representative for each class: the centroid/prototype
- Classification: nearest prototype/centroid
- It does not guarantee that classifications are consistent with the given training data

Why not?

Two-class Rocchio as a linear classifier

Line or hyperplane defined by:

$$\sum_{i=1}^{M} w_i d_i = \theta$$

• For Rocchio, set:

$$\vec{w} = \vec{\mu}(c_1) - \vec{\mu}(c_2)$$

$$\theta = 0.5 \times (|\vec{\mu}(c_1)|^2 - |\vec{\mu}(c_2)|^2)$$

Linear classifier: Example

- Class: "interest" (as in interest rate)
- Example features of a linear classifier

 $\cdot 0.70^{\mathbf{w}_i t_i}$ prime

· -0.71 dlrs

- · 0.67 rate
- -0.35 world · −0.33 sees
- · 0.63 interest
- · 0.60 rates
- -0.25 year
- · 0.46 discount

- · −0.24 group
- · 0.43 bundesbank · -0.24 dlr
- To classify, find dot product of feature vector and weights

Rocchio classification

- A simple form of Fisher's linear discriminant
- Little used outside text classification
 - It has been used quite effectively for text classification
 - But in general worse than Naïve Bayes
- Again, cheap to train and test documents

7

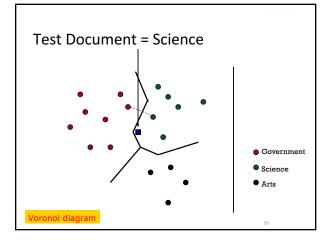
ntroduction to Information Retrieva

Sec 14 3

k Nearest Neighbor Classification

- kNN = k Nearest Neighbor
- To classify a document d:
- Define k-neighborhood as the k nearest neighbors of d
- Pick the majority class label in the kneighborhood
- For larger k can roughly estimate P(c|d) as #(c)/k

18



Nearest-Neighbor Learning

- Learning: just store the labeled training examples D
- Testing instance x (under 1NN):
 - Compute similarity between x and all examples in D.
 - Assign x the category of the most similar example in D.
- Does not compute anything beyond storing the examples
- Also called:
 - Case-based learning
 - Memory-based learning
 - Lazy learning
- Rationale of kNN: contiguity hypothesis

40

k Nearest Neighbor

- Using only the closest example (1NN) is subject to errors due to:
 - A single atypical example.
 - Noise (i.e., an error) in the category label of a single training example.
- More robust: find the k examples and return the majority category of these k
- k is typically odd to avoid ties; 3 and 5 are most common

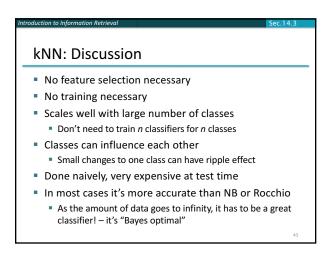
Introduction to Information Retrieva

Sec.14.

Nearest Neighbor with Inverted Index

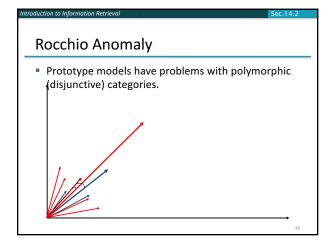
- Naively finding nearest neighbors requires a linear search through |D| documents in collection
- But determining k nearest neighbors is the same as determining the k best retrievals using the test document as a query to a database of training documents.
- Use standard vector space inverted index methods to find the k nearest neighbors.
- Testing Time: O(B|V_t|) where B is the average number of training documents in which a test-document word appears.
 - Typically B << |D|</p>

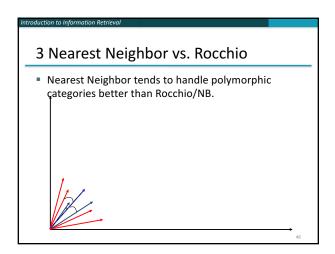
42



Let's test our intuition

- Can a bag of words always be viewed as a vector space?
- What about a bag of features?
- Can we always view a standing query as a contiguous region in a vector space?
- Do far away points influence classification in a kNN classifier? In a Rocchio classifier?
- Can a Rocchio classifier handle disjunctive classes?
- Why do linear classifiers actually work well for text?





Bias vs. capacity — notions and terminology

Consider asking a botanist: Is an object a tree?
Too much capacity, low bias
Botanist who memorizes
Will always say "no" to new object (e.g., different # of leaves)

Not enough capacity, high bias
Lazy botanist
Says "yes" if the object is green
You want the middle ground

kNN vs. Naive Bayes

■ Bias/Variance tradeoff

■ Variance ≈ Capacity

■ kNN has high variance and low bias.

■ Infinite memory

■ Rocchio/NB has low variance and high bias.

■ Linear decision surface between classes

Bias vs. variance: Choosing the correct model capacity

49

oduction to Information Retrieval

Summary: Representation of Text Categorization Attributes

- Representations of text are usually very high dimensional
 - "The curse of dimensionality"
- High-bias algorithms should generally work best in high-dimensional space
 - They prevent overfitting
 - They generalize more
- For most text categorization tasks, there are many relevant features & many irrelevant ones

50

Which classifier do I use for a given text classification problem?

- Is there a learning method that is optimal for all text classification problems?
- No, because there is a tradeoff between bias and variance.
- Factors to take into account:
 - How much training data is available?
 - How simple/complex is the problem? (linear vs. nonlinear decision boundary)
 - How noisy is the data?
 - How stable is the problem over time?
 - For an unstable problem, it's better to use a simple and robust classifier.