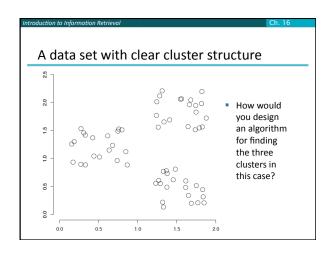
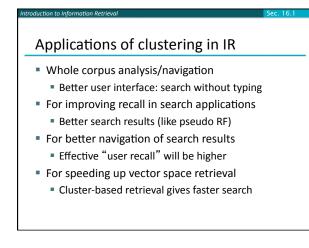
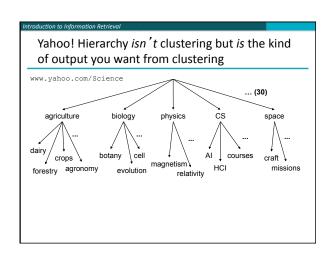
Introduction to Information Retrieval CS276: Information Retrieval and Web Search Pandu Nayak and Prabhakar Raghavan Lecture 12: Clustering

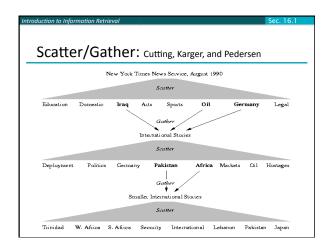
Today's Topic: Clustering Document clustering Motivations Document representations Success criteria Clustering algorithms Partitional Hierarchical

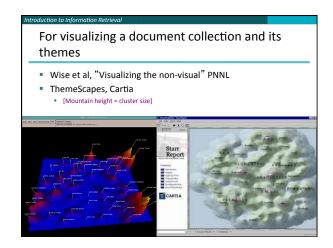
What is clustering? Ch. 16 What is clustering? Clustering: the process of grouping a set of objects into classes of similar objects Documents within a cluster should be similar. Documents from different clusters should be dissimilar. The commonest form of unsupervised learning Unsupervised learning = learning from raw data, as opposed to supervised data where a classification of examples is given A common and important task that finds many applications in IR and other places





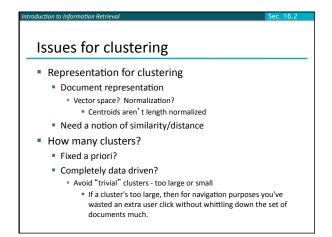






For improving search recall

Cluster hypothesis - Documents in the same cluster behave similarly with respect to relevance to information needs
Therefore, to improve search recall:
Cluster docs in corpus a priori
When a query matches a doc D, also return other docs in the cluster containing D
Hope if we do this: The query "car" will also return docs containing automobile
Because clustering grouped together docs containing car with those containing automobile.
Why might this happen?



ntroduction to Information Retrieva

Notion of similarity/distance

- Ideal: semantic similarity.
- Practical: term-statistical similarity
 - We will use cosine similarity.
 - Docs as vectors.
 - For many algorithms, easier to think in terms of a distance (rather than similarity) between docs.
 - We will mostly speak of Euclidean distance
 - But real implementations use cosine similarity

ntroduction to Information Retrieva

Clustering Algorithms

- Flat algorithms
 - Usually start with a random (partial) partitioning
 - Refine it iteratively
 - K means clustering
 - (Model based clustering)
- Hierarchical algorithms
 - Bottom-up, agglomerative
 - (Top-down, divisive)

troduction to Information Retrieva

Hard vs. soft clustering

- Hard clustering: Each document belongs to exactly one cluster
 - More common and easier to do
- Soft clustering: A document can belong to more than one cluster.
 - Makes more sense for applications like creating browsable hierarchies
 - You may want to put a pair of sneakers in two clusters: (i) sports apparel and (ii) shoes
 - You can only do that with a soft clustering approach.
- We won't do soft clustering today. See IIR 16.5, 18

roduction to Information Retrieva

Partitioning Algorithms

- Partitioning method: Construct a partition of n documents into a set of K clusters
- Given: a set of documents and the number K
- Find: a partition of K clusters that optimizes the chosen partitioning criterion
 - Globally optimal
 - Intractable for many objective functions
 - Ergo, exhaustively enumerate all partitions
 - Effective heuristic methods: K-means and K-medoids algorithms

See also Kleinberg NIPS 2002 – impossibility for natural clustering

Introduction to Information Retrieva

Sec. 16.4

K-Means

- Assumes documents are real-valued vectors.
- Clusters based on centroids (aka the center of gravity or mean) of points in a cluster, c:

$$\vec{\mu}(c) = \frac{1}{|c|} \sum_{x \in c} \vec{x}$$

- Reassignment of instances to clusters is based on distance to the current cluster centroids.
 - (Or one can equivalently phrase it in terms of similarities)

Introduction to Information Retrieval

Sec. 16.4

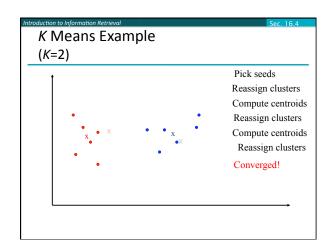
K-Means Algorithm

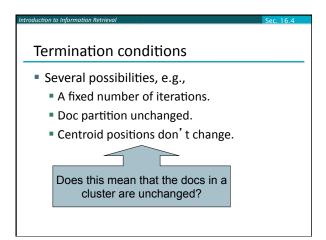
Select K random docs $\{s_1, s_2, ... s_K\}$ as seeds.

Until clustering converges (or other stopping criterion): For each doc d_i :

Assign d_i to the cluster c_j such that $dist(x_i, s_j)$ is minimal. (Next, update the seeds to the centroid of each cluster) For each cluster c_i

 $s_i = \mu(c_i)$



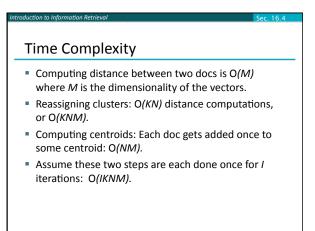


Convergence Why should the K-means algorithm ever reach a fixed point? A state in which clusters don't change. K-means is a special case of a general procedure known as the Expectation Maximization (EM) algorithm. EM is known to converge. Number of iterations could be large.

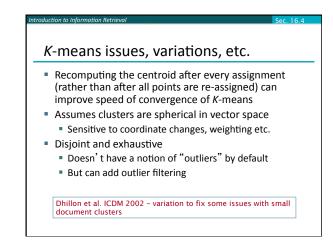
But in practice usually isn't

Lower case! Convergence of K-Means Define goodness measure of cluster k as sum of squared distances from cluster centroid: $G_k = \Sigma_i (d_i - c_k)^2$ (sum over all d_i in cluster k) $G = \Sigma_k G_k$ Reassignment monotonically decreases G since each vector is assigned to the closest centroid.

Convergence of K-Means Recomputation monotonically decreases each G_k since $(m_k$ is number of members in cluster k): $\Sigma (d_i - a)^2 \text{ reaches minimum for:}$ $\Sigma -2(d_i - a) = 0$ $\Sigma d_i = \Sigma a$ $m_k a = \Sigma d_i$ $a = (1/m_k) \Sigma d_i = c_k$ K-means typically converges quickly







How Many Clusters?

- Number of clusters K is given
- Partition n docs into predetermined number of clusters
- Finding the "right" number of clusters is part of the problem
 - Given docs, partition into an "appropriate" number of subsets.
 - E.g., for query results ideal value of K not known up front though UI may impose limits.
- Can usually take an algorithm for one flavor and convert to the other.

roduction to Information Retrieval

K not specified in advance

- Say, the results of a query.
- Solve an optimization problem: penalize having lots of clusters
 - application dependent, e.g., compressed summary of search results list.
- Tradeoff between having more clusters (better focus within each cluster) and having too many clusters

troduction to Information Retrieval

K not specified in advance

- Given a clustering, define the <u>Benefit</u> for a doc to be the cosine similarity to its centroid
- Define the <u>Total Benefit</u> to be the sum of the individual doc Benefits.

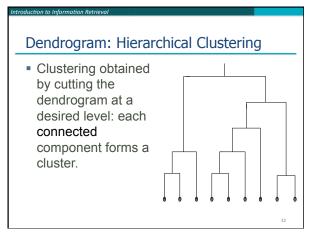
Why is there always a clustering of Total Benefit *n*?

ntroduction to Information Retrieva

Penalize lots of clusters

- For each cluster, we have a <u>Cost</u> *C*.
- Thus for a clustering with K clusters, the <u>Total Cost</u> is
- Define the <u>Value</u> of a clustering to be = Total Benefit - Total Cost.
- Find the clustering of highest value, over all choices of K.
 - Total benefit increases with increasing K. But can stop when it doesn't increase by "much". The Cost term enforces this.

Hierarchical Clustering Build a tree-based hierarchical taxonomy (dendrogram) from a set of documents. Vertebrate invertebrate worm insect crustacean One approach: recursive application of a partitional clustering algorithm.



Hierarchical Agglomerative Clustering (HAC)

Starts with each doc in a separate cluster
then repeatedly joins the closest pair of clusters, until there is only one cluster.
The history of merging forms a binary tree or hierarchy.

Note: the resulting clusters are still "hard" and induce a partition

Closest pair of clusters

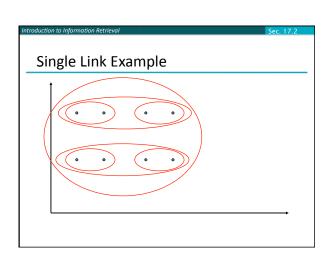
Many variants to defining closest pair of clusters

Single-link
Similarity of the most cosine-similar (single-link)
Complete-link
Similarity of the "furthest" points, the least cosine-similar
Centroid
Clusters whose centroids (centers of gravity) are the most cosine-similar
Average-link
Average cosine between pairs of elements

Single Link Agglomerative Clustering

Use maximum similarity of pairs: $sim(c_i,c_j) = \max_{\substack{x \in c_i, y \in c_j \\ x \in c_i, y \in c_j \\ y \in c_j}} sim(x,y)$ Can result in "straggly" (long and thin) clusters due to chaining effect.

After merging c_i and c_j , the similarity of the resulting cluster to another cluster, c_k , is: $sim((c_i \cup c_j), c_k) = \max(sim(c_i, c_k), sim(c_j, c_k))$



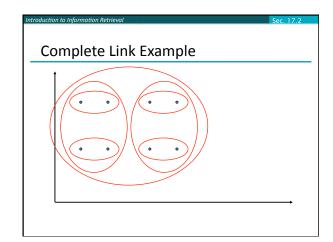
Complete Link

Use minimum similarity of pairs:

$$sim(c_i,c_j) = \min_{x \in c_i, y \in c_j} sim(x,y)$$
• Makes "tighter," spherical clusters that are typically

- preferable.
- After merging c_i and c_i , the similarity of the resulting cluster to another cluster, c_k , is:

$$sim((c_i \cup c_j), c_k) = min(sim(c_i, c_k), sim(c_j, c_k))$$



Computational Complexity

- In the first iteration, all HAC methods need to compute similarity of all pairs of N initial instances, which is $O(N^2)$.
- In each of the subsequent N-2 merging iterations, compute the distance between the most recently created cluster and all other existing clusters.
- In order to maintain an overall O(N²) performance, computing similarity to each other cluster must be done in constant time.
 - Often O(N³) if done naively or O(N² log N) if done more cleverly

Group Average

Similarity of two clusters = average similarity of all pairs within merged cluster.

$$sim(c_i, c_j) = \frac{1}{\left|c_i \cup c_j\right| \left(\left|c_i \cup c_j\right| - 1\right)} \sum_{\vec{x} \in (c_i \cup c_j)} \sum_{\vec{y} \in (c_i \cup c_j), \vec{y} \neq \vec{x}} sim(\vec{x}, \vec{y})$$

- Compromise between single and complete link.
- Two options:
 - Averaged across all ordered pairs in the merged cluster
 - Averaged over all pairs between the two original clusters
- No clear difference in efficacy

Computing Group Average Similarity

Always maintain sum of vectors in each cluster.

$$\vec{s}(c_j) = \sum_{\vec{x} \in c_j} \vec{x}$$

Compute similarity of clusters in constant time:

$$sim(c_i, c_j) = \frac{(\vec{s}(c_i) + \vec{s}(c_j)) \bullet (\vec{s}(c_i) + \vec{s}(c_j)) - (|c_i| + |c_j|)}{(|c_i| + |c_j|)(|c_i| + |c_j| - 1)}$$

What Is A Good Clustering?

- Internal criterion: A good clustering will produce high quality clusters in which:
 - the intra-class (that is, intra-cluster) similarity is high
 - the inter-class similarity is low
 - The measured quality of a clustering depends on both the document representation and the similarity measure used

External criteria for clustering quality

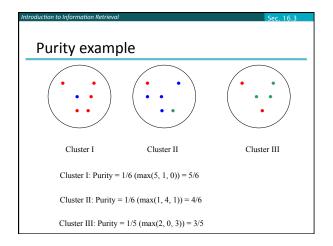
- Quality measured by its ability to discover some or all of the hidden patterns or latent classes in gold standard data
- Assesses a clustering with respect to ground truth ... requires labeled data
- Assume documents with C gold standard classes, while our clustering algorithms produce K clusters, ω_1 , ω_2 , ..., ω_K with n_i members.

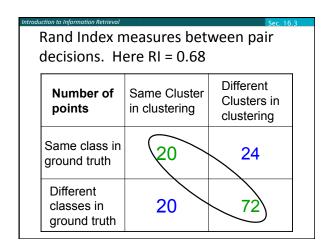
External Evaluation of Cluster Quality

Simple measure: purity, the ratio between the dominant class in the cluster π_i and the size of cluster ω_i

Purity
$$(\omega_i) = \frac{1}{n_i} \max_j (n_{ij}) \quad j \in C$$

- Biased because having n clusters maximizes
- Others are entropy of classes in clusters (or mutual information between classes and clusters)





Rand index and Cluster F-measure

$$RI = \frac{A+D}{A+B+C+D}$$

Compare with standard Precision and Recall:

$$P = \frac{A}{A+B} \qquad \qquad R = \frac{A}{A+C}$$

$$R = \frac{A}{A + C}$$

People also define and use a cluster Fmeasure, which is probably a better measure.

Final word and resources

- In clustering, clusters are inferred from the data without human input (unsupervised learning)
- However, in practice, it's a bit less clear: there are many ways of influencing the outcome of clustering: number of clusters, similarity measure, representation of documents, . . .
- Resources
 - IIR 16 except 16.5
 - IIR 17.1–17.3