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Summa ry — BIM [Robertson & Sparck-Jones 1976]

= Boils down to

Ry S, o g DAL= 198 s

et (1- pi)ri ratio
where
[ ldocument ____|relevant(R=1) | notrelevant (R=0) |
term present x=1 p; r
term absent x=0 (1-p) (1-r)

= With constant p; = 0.5, simplifies to IDF weighting:

RSV=Y log ¥

xX=q;=1 i

A key limitation of the BIM

= BIM — like much of original IR — was designed for
titles or abstracts, and not for modern full text
search

= We want to pay attention to term frequency and
document lengths, just like in other models we

discuss
r
= Want C. = logm
i

Doy

= Want some model of how often terms occur in docs
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@ OpenSource Connections WhatWe Do Case Studies ~ About Us

e BM25 The Next Generation of Lucene Relevance

Doug Turnbull — October 16, 2015

There’s something new cooking in how Lucene scores text. Instead of the traditional “TF*IDF,”
Lucene just switched to something called BM25 in trunk. That means a new scoring formula

for Solr (Solr 6) and Elasticsearch down the line.

Sounds cool, but what does it all mean? In this article I want to give you an overview of how
the switch might be a boon to your Solr and Elasticsearch applications. What was the original
TF*IDF? How did it work? What does the new BM25 do better? How do you tune it? Is BM25
right for everything?
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Graphical model for BIM — Bernoulli NB

<:] Binary
variables

i€q xi=(tfz.‘#0)
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1. Okapl BM25 [Robertson et al. 1994, TREC City U.]

= BM25 “Best Match 25” (they had a bunch of tries!)
= Developed in the context of the Okapi system

= Started to be increasingly adopted by other teams during
the TREC competitions

= It works well

= Goal: be sensitive to term frequency and document
length while not adding too many parameters
= (Robertson and Zaragoza 2009; Sparck Jones et al. 2000)
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Generative model for documents

= Words are drawn independently from the vocabulary
using a multinomial distribution

[ the draft is that each team is given a position in the draft ]
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Poisson distribution

= The Poisson distribution models the probability of k,
the number of events occurring in a fixed interval of
time/space, with known average rate A ( = cf/T),

independent of the last event
k

A
P(k)—ye

= Examples
= Number of cars arriving at the toll booth per minute
= Number of typos on a page
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Poisson model

= Assume that term frequencies in a document (f;)
follow a Poisson distribution

= “Fixed interval” implies fixed document length ...
think roughly constant-sized document abstracts

= ... will fix later
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Generative model for documents

= Distribution of term frequencies (tf) follows a
binomial distribution — approximated by a Poisson
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Poisson distribution

= If Tis large and p is small, we can approximate a
binomial distribution with a Poisson where A = Tp
k

= A’ -2
pk)= Ee

= Mean = Variance = A = Tp.
= Example p =0.08, T = 20. Chance of 1 occurrence is:

= Binomial p(1)=( 210 ](_03)‘(_92)”:.3282

'
= Poisson (1= 1O oo 18 153939 .. already close
I 1
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Poisson distributions
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(One) Poisson Model

1”

= |s a reasonable fit for “general” words

= |s a poor fit for topic-specific words
= get higher p(k) than predicted too often

-_ Documents containing k occurrences of word (A = 53/650)

Freq Word o 1 2 3 4 5 6 7 8 9 10 11 12
53 expected 599 49 2

52 based 600 48 2

53 conditions 604 39 7

55 cathexis 619 22 3 2 2

51 comic 642 3 0O 1 0 O 0 01 1 2

Harter, “A Probabilistic Approach to Automatic Keyword Indexing”, JASIST, 1975
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Elite terms

Text from the Wikipedia page on the NFL draft showing
elite terms

The National Football League Draft
is an annual event in which the
National Football League (NFL)
teams select eligible college
football players. It serves as the
league’s most common source of
player recruitment. The basic design
of the draft is that each team is given
a position in the draft order in
reverse order relative to its record ...
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Retrieval Status Value

= Similar to the BIM derivation, we have
Rsvem _ E Cfliw(lﬁ);

i€q.1f>0
where
p(TF, = tf|R =1)p(TF, = 0|R = 0)
(1) =log
Pp(TF, =0R=1)p(TF, = tf;|R = 0)

and using eliteness, we have:
P(TF, =1f,|R) = p(TF, =,
+p(TF, = 1f;

E, = elite)p(E, = elite|R)
E, = elite)(1- p(E, = elite|R))
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Eliteness (“aboutness”)

= Model term frequencies using eliteness
= What is eliteness?

= Hidden variable for each document-term pair,
denoted as E; for term i

= Represents aboutness: a term is elite in a
document if, in some sense, the document is
about the concept denoted by the term

= Eliteness is binary
= Term occurrences depend only on eliteness...
= ... but eliteness depends on relevance
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Graphical model with eliteness

<:] Binary

variables

u <;:] Frequencies
(not binary)

i€q
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2-Poisson model

= The problems with the 1-Poisson model suggests
fitting two Poisson distributions

= In the “2-Poisson model”, the distribution is different
depending on whether the term is elite or not

AP pk
p(TF, =k, |R)= m—e "+ (1—m)7—e ¥
k! k!
= where 1t is probability that document is elite for term
= but, unfortunately, we don’t know m, A, 1
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Let’s get an idea: Graphing ¢! (tf;) for
different parameter values of the 2-Poisson

LI, ettt

v

0 term frequency ( if;) 0
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Approximating the saturation function

= Estimating parameters for the 2-Poisson model is not
easy

= ... So approximate it with a simple parametric curve
that has the same qualitative properties

7
k +tf
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“Early” versions of BM25

= Version 1: using the saturation function

g tf.
C’BMZSH(U;)=C;’§IM ff;

k, +1f,
= Version 2: BIM simplification to IDF
CiBMzsvz(tf;) _ loglx (k, +Dytf;
df, k+itf,

= (k,+1) factor doesn’t change ranking, but makes
term score 1 when #f; = 1

= Similar to #f~idf, but term scores are bounded
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Qualitative properties

- C;:l[le(o) = 0

elite

¢;"“(#f;) increases monotonically with #f;

= ... but asymptotically approaches a maximum value

as tf, > [not true for simple scaling of tf]
Weight of
= ... with the asymptotic limit being ¢ <~ eliteness
feature
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Saturation function

1
T —— X/10.2+%)

09 | — X[Lx)————
X/(3+X]

g )
0.8 - / X/(10+x)

o 2 L L L L
0 2 4 6 8 10

= For high values of k|, increments in #f; continue to
contribute significantly to the score

= Contributions tail off quickly for low values of k,
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Document length normalization

= Longer documents are likely to have larger #f; values

= Why might documents be longer?
= Verbosity: suggests observed ¢f; too high
= Larger scope: suggests observed ¢#f; may be right

= Areal document collection probably has both effects
= ... so should apply some kind of partial normalization
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Document length normalization

= Document length:
di=Yif,
i€V
= avdl: Average document length over collection
= Length normalization component

B=((1—b)+bi), O0<b=l1
avdl

= p =1 full document length normalization
= b = (0 no document length normalization
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Okapi BM25
= Normalize ¢fusing document length
.t
=2
tf; B
2 N (k +Dif’
T s(1‘7§)=10g—><‘7,’
dfi  k+tf;
ctog Y Grlit
df, k(A=b)+b-C )+
= BM25 ranking function
RSVBMZS =ECiBM25(tfi);
i€q
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Why is BM25 better than VSM tf-idf?

= Suppose your query is [machine learning]

= Suppose you have 2 documents with term counts:
= docl: learning 1024; machine 1
= doc2: learning 16; machine 8

= tf-idf: log, tf * log, (N/df)

= docl:11*7+1*10 =87

= doc2:5*7+4*10 =75
= BM25: k; =2

= docl:7*3+10*1 =31

= doc2:7*2.67+10*2.4 =42.7
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Document length normalization

e
~ = |
33
=
§
=
*v o
5 e dl = avdl
+ .
3 Y
| e
S o
— o© 7 o
-~ /(,/”
3
z T
<
PR o

dl = avdl * 10
e 4
g
— T
1 2 3 4 5 6 7 8 9 10
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Okapi BM25
RSYEM _ Elogl' (k, "’l)ti;,-l
e A ok-n+0-yey
avdl

= k; controls term frequency scaling
= k; = 0is binary model; &, large is raw term frequency
= b controls document length normalization

= b = 0is no length normalization; b = 1 is relative
frequency (fully scale by document length)

= Typically, k; is set around 1.2-2 and b around 0.75

= /IR sec. 11.4.3 discusses incorporating query term
weighting and (pseudo) relevance feedback
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2. Ranking with features

= Textual features
= Zones: Title, author, abstract, body, anchors, ...
= Proximity
= Non-textual features
= File type
= File age
= Page rank
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Ranking with zones

= Straightforward idea:

= Apply your favorite ranking function (BM25) to
each zone separately

= Combine zone scores using a weighted linear
combination

= But that seems to imply that the eliteness properties
of different zones are different and independent of
each other

= ..which seems unreasonable
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BM25F with zones

= Calculate a weighted variant of total term frequency
= ... and a weighted variant of document length

Z Z
o= Y vif dl =Y vlen,  avdl = Average dl
=i P=| across all
where documents

v, is zone weight

tf.;is term frequency in zone z
len, is length of zone z

Zis the number of zones
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BM25F

= Empirically, zone-specific length normalization (i.e.,
zone-specific b) has been found to be useful

B,=((1—bz)+bzﬂ), 0<b =1
avlenZ :

RSVEMSE _ Elogﬁ' (k, +1)~lf;
& &k

See Robertson and Zaragoza (2009: 364)
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Ranking with zones

= Alternate idea

= Assume eliteness is a term/document property
shared across zones

= ... but the relationship between eliteness and term
frequencies are zone-dependent

= e.g., denser use of elite topic words in title

= Consequence
= First combine evidence across zones for each term
= Then combine evidence across terms
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Simple BM25F with zones

RS SmpleBM2SF _ EIOng' (k, +1)t§,-l~
= k((1-b)+b—=)+1,
avdl

= Simple interpretation: zone z is “replicated” v, times

= But we may want zone-specific parameters (k,, b,
IDF)
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Ranking with non-textual features

= Assumptions
= Usual independence assumption
= Independent of each other and of the textual features

= Allows us to factor out w in BIM-style
derivation p(F,=f, ‘R =0)

= Relevance information is query independent
= Usually true for features like page rank, age, type, ...

= Allows us to keep all non-textual features in the BIM-
style derivation where we drop non-query terms
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Ranking with non-textual features

RSV = Ec(zfﬂzljvj(f)

where Sq

F. =f|R=1
V() =log AL L R=D

p(F, = f[R=0)
for rescalings in the approximations

f;

and A, is an artificially added free parameter to account

= Care must be taken in selecting V; depending on F;. E.g.

1

log(A + f;) a7
it

Aj+exp(-f;A])
= Explains why RSV*? +log(pagerank) works well
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User Behavior

= Adapt ranking to user clicks?

# of clicks received

I
I— -
-

0 20 40 60
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Web search click log

95 17:10:03 7
1998497 allegiant air  2006-03-05 18:22:26 1
1998497 disney coronodo springs resort orlando f1
1998497 W hli.con  2005-03-10 99:95:39

5
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1998497 awy grant 2 htep://vw.cmygrant .con

http://en.vikipedia.org
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http://vww.yohoo .con
http://vw.go0gle .com

http://www.bostonmarket .ct
Lo Tl mncumem org
p:/ e .0C3-tx 0T
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User Behavior

= Search Results for "CIKM” (in 2010!)
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User Behavior

= Tools needed for non-trivial cases

# of clicks received

ot &S5 Napa Vlly, CafovisOctabar 2630, 208

yam Commitee

S s e om0 g

Provdes anmsmzionl o for presetainand scussin o seach on it 304

sl oty B3t 130
Confe
A Headutars,

ACM CIKM 2007 - Lisbon, Porugel

d Knowledge Mans
USh, 5 oo 2002

KM 2009 | Home
< (1

€Il Contrence on Information and Knowdge Hanagement T Confrence on
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Web Search Click Log

* How large is the click log?
=INgG searchlogs: 10+ TB/day

In existing publications:
= [Silverstein+gg]: 285M sessions
= [Craswell+08]: 108k sessions
= [Dupret+08] : 4.5M sessions (21 subsets * 216k sessions)

= [Guo +09a] : 8.8M sessions from 110k unique queries

= [Guo+ogb]: 8.8M sessions from 110k unique queries

= [Chapelle+og]: 58M sessions from 682k unique queries
= [Liu+oga]: 0.26PB data from 103M unique queries
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Interpret Clicks: an Example

= Clicks are good...

= Are these two clicks
equally “good”?

= Non-clicks may have
excuses:

= Not relevant

= Not examined @
=
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Click Position-bias

= Higher positions receive
more user attention (eye
fixation) and clicks than
lower positions.

Percentage

= Thisistrue evenin the
extreme setting where
the order of positions is
reversed.

Percentage

= “Clicks are informative
but biased".joachims+o7]

Reversed Impression

45
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Features based on user behavior

From [Agichtein, Brill, Dumais 2006; Joachims 2002]
= Click-through features

= Click frequency, click probability, click deviation

= Click on next result? previous result? above? below>?
= Browsing features

= Cumulative and average time on page, on domain, on URL
prefix; deviation from average times

= Browse path features

= Query-text features
= Query overlap with title, snippet, URL, domain, next query
= Query length

5/21/117

Introduction to Information Retrieval

Eye-tracking User Study
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User behavior

= User behavior is an intriguing source of relevance data

= Users make (somewhat) informed choices when
they interact with search engines

= Potentially a lot of data available in search logs

= But there are significant caveats
= User behavior data can be very noisy
= Interpreting user behavior can be tricky
= Spam can be a significant problem
= Not all queries will have user behavior
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Incorporating user ! e' !awor into

ranking algorithm

= Incorporate user behavior features into a ranking
function like BM25F

= But requires an understanding of user behavior
features so that appropriate V; functions are used

= Incorporate user behavior features into learned
ranking function

= Either of these ways of incorporating user behavior
signals improve ranking
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