Introduction to **Information Retrieval**

Standing queries

- The path from IR to text classification:
 - You have an information need to monitor, say: Unrest in the Niger delta region
 - You want to rerun an appropriate query periodically to find new news items on this topic
 - You will be sent new documents that are found I.e., it's not ranking but classification (relevant vs. not relevant)
- Such gueries are called standing gueries Long used by "information professionals"
 - A modern mass instantiation is Google Alerts
- Standing gueries are (hand-written) text

ntroduction to Information Retrieval

ntroduction to Information Retrieval

From: Google Alerts

- Subject: Google Alert stanford -neuro-linguistic nlp OR "Natural Language Processing" OR parser OR tagger OR ner OR "named entity" OR segmenter OR classifier OR dependencies OR "core nlp" OR corenlp OR phrasal Date: May 7, 2012 8:54:53 PM PDT To: Christopher Manning

3 new results for stanford -neuro-linguistic nlp OR "Natural La ssing" OR parser OR tagger OR ner OR "named entity" OR seg OR classifier OR dependencies OR "core nlp" OR corenlp OR Proce

[Java] LexicalizedParser Ip = LexicalizedParser.loadModel("edu ... badModo("oduitanford/hajmode/æxparser/englahPCFG.ser.gz"),. String] sent = { "This", "is", "an", "easy", "sentence", ":,", "Ire parse = Is apply(Arrays.

More Problems with Statistical NLP || kuro5hin.org Tags: nj, al. coursera, stanford, njc-class, cky, ntk, reinventing the wheel, ... Programming Assignment 6 for Stanford's njc-class is to implement a CXY parser . www.kuro5hin.org/story/2012/5/5/11011/68221

Tip: Use guotes ("like this") around a set of words in your guery to match them exactly. Learn more Delete this alert. Create another alert Manage your alerts.

Spam filtering Another text classification task

From: "" <takworlld@hotmail.com> Subject: real estate is the only way ... gem oalvgkay

Anyone can buy real estate with no money down

Stop paying rent TODAY !

There is no need to spend hundreds or even thousands for similar courses

I am 22 years old and I have already purchased 6 properties using the methods outlined in this truly INCREDIBLE ebook

Change your life NOW !

Click Below to order:

http://www.wholesaledaily.com/sales/nmd.htm

duction to Information Retrieval

Text classification

Today:

- Introduction to Text Classification
- Also widely known as "text categorization"
 - Same thing
- Naïve Bayes text classification
 - Including a little on Probabilistic Language Models

ntroduction to Information Retrieval

Categorization/Classification

- Given:
 - A description of an instance, $d \in X$
 - X is the instance language or instance space.
 - Issue: how to represent text documents.
 - Usually some type of high-dimensional space bag of words
 - A fixed set of classes:
 - $C = \{c_1, c_2, ..., c_l\}$
- Determine:
 - The category of d: $\gamma(d) \in C$, where $\gamma(d)$ is a classification function whose domain is X and whose range is C.
 - We want to know how to build classification functions

Machine Learning: Supervised Classification

Given:

- A description of an instance, d ∈ X
 - X is the instance language or instance space.
- A fixed set of classes:
 - $C = \{c_1, c_2, ..., c_l\}$
- A training set D of labeled documents with each labeled document $\langle d, c \rangle \in X \times C$
- Determine:
 - A learning method or algorithm which will enable us to learn a classifier $\gamma: X \rightarrow C$
 - For a test document d, we assign it the class $\gamma(d) \in C$

ntroduction to Information Retr **Document Classification** ʻplanning language Test proof intelligence" Data: (AI) (Programming) (HCI) Classes: Planning Garb.Coll. GUI Semantics Multimedia ML. Training learning planning programming garbage Data: intelligence collection temporal semantics reasoning algorithm language memory optimization reinforcement plan proof... network... language... region ... (Note: in real life there is often a hierarchy, not present in the above problem statement; and also, you get papers on ML approaches to Garb. Coll.)

More Text Classification Examples

- Assigning labels to documents or web-pages:
- Labels are most often topics such as Yahoocategories

"finance," "sports," "news>world>asia>business" Labels may be genres

- "movie-reviews" "news" 'editorials"
- Labels may be opinion on a person/product "like", "hate", "neutral"
- Labels may be domain-specific
 - "interesting-to-me": "not-interesting-to-me"
 - "contains adult language" : "doesn't"
 - Ianguage identification: English, French, Chinese, ...
 - search vertical: about Linux versus not
 - "link spam": "not link spam"

duction to Information Retrieval

Classification Methods (1)

Manual classification

Introduction to Information Retrieval

- Used by the original Yahoo! Directory
- Looksmart, about.com, ODP, PubMed
- Very accurate when job is done by experts
- Consistent when the problem size and team is small
- Difficult and expensive to scale Means we need automatic classification methods for big problems

Classification Methods (2)

Hand-coded rule-based classifiers

- One technique used by CS dept's spam filter, Reuters, CIA, etc.
- It's what Google Alerts is doing Widely deployed in government and enterprise
- Companies provide "IDE" for writing such rules
- E.g., assign category if document contains a given boolean combination of words
- Commercial systems have complex query languages (everything in IR query languages +score accumulators)
- Accuracy is often very high if a rule has been carefully refined over time by a subject expert

duction to Information Retrieval A Verity topic A complex classification rule

Beginning of art topic definiti art ACCRUE art ACCRUE
 /author = 'fsmith'
 /date = '30-Dec-01"
 /annotation = "Topic created
 by fsmith"
 0.70 performing-arts ACCRUE
 • 0.50 WORD - 0.70 performing-sts ACCHTE - 0.50 USD - verdtest > bilet - 0.50 USD - verdtest > bilet - 0.50 USD - verdtest = opera - 0.50 USD - verdtest = opera - 0.50 USD - verdtest = opera - 0.70 visual-ris ACCHE - 0.70 visual-ris ACCHE - 0.70 VISU - riskinting - 0.50 USD - verdtest = filk - 0.76 USD - verdtest = filk - 0.76 USD - verdtest = filk - verdtest = notion - verdt /vordtext = picture t = novie ACCRUE 50 video .50 STEM - video ** 0.50 STEM /vordtext =
End of art to

- Note:
 - maintenance issues (author, etc.) Hand-weighting of
 - terms

[Verity was bought by Autonomy.]

ntroduction to Information Retrieval

Ch. 13

Classification Methods (3)

- Supervised learning of a document-label assignment function
 - Many systems partly or wholly rely on machine learning (Autonomy, Microsoft, Enkata, Yahoo!, ...)
 - k-Nearest Neighbors (simple, powerful)
 - Naive Bayes (simple, common method)
 - Support-vector machines (new, generally more powerful)
 - ... plus many other methods
 - No free lunch: requires hand-classified training data
 - But data can be built up (and refined) by

Relevance feedback

- In relevance feedback, the user marks a few documents as relevant/nonrelevant
- The choices can be viewed as classes or categories
- The IR system then uses these judgments to build a better model of the information need
- So, relevance feedback can be viewed as a form of text classification (deciding between several classes)

Introduction to Information Retrieval

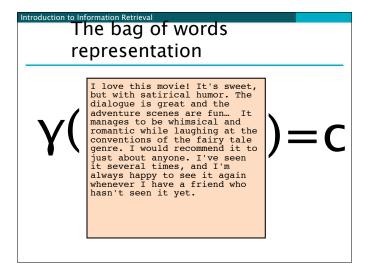
Probabilistic relevance feedback

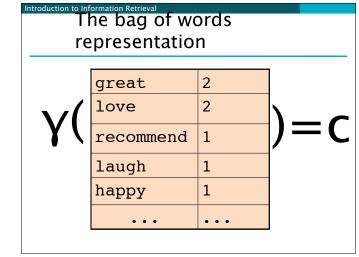
- Rather than reweighting in a vector space...
- If user has told us some relevant and some nonrelevant documents, then we can proceed to build a probabilistic classifier
 - such as the Naive Bayes model we will look at today:
 - $P(t_k|R) = |\mathbf{D}_{rk}| / |\mathbf{D}_r|$
 - $P(t_k|NR) = |\mathbf{D}_{nrk}| / |\mathbf{D}_{nr}|$
 - t_k is a term; D_r is the set of known relevant documents; D_{rk} is the subset that contain t_k ; D_{nr} is the set of known nonrelevant documents; D_{nrk} is the subset that contain t_k .

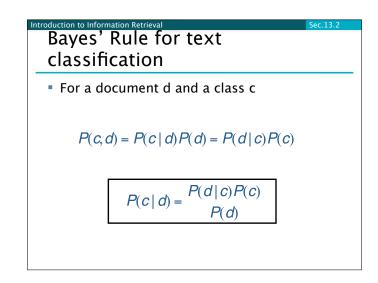
Bayesian Methods

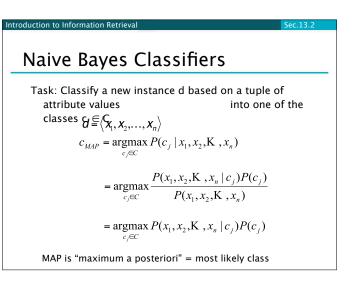
Introduction to Information Retrieval

- Learning and classification methods based on probability theory
- Bayes theorem plays a critical role
- Builds a generative model that approximates how data is produced
- Has prior probability of each category given no information about an item.
- Model produces a posterior probability
 Distribution over the possible categories given an item
- Naïve Bayes methods use a bag of words as the item description







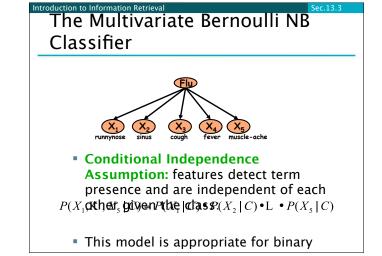


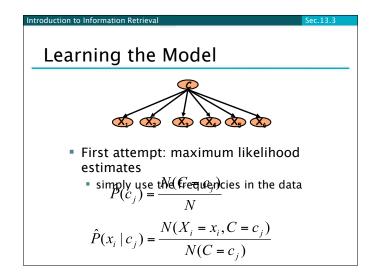
Naïve Bayes Classifier: Naïve Bayes Assumption

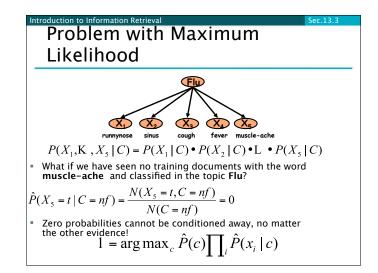
- $P(c_i)$
 - Can be estimated from the frequency of classes in the training examples.
- $P(x_1, x_2, ..., x_n | c_j)$
 - O(|X|ⁿ•|C|) parameters
 - Could only be estimated if a very, very large number of training examples was available.

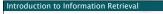
Naïve Bayes Conditional Independence Assumption:

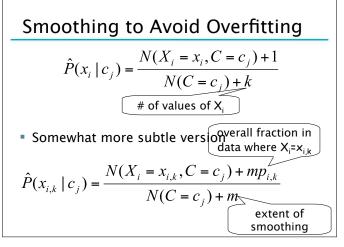
 Assume that the probability of observing the conjunction of attributes is equal to the product of the individual probabilities P(x_i|c_i).

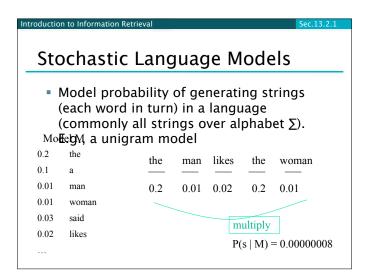




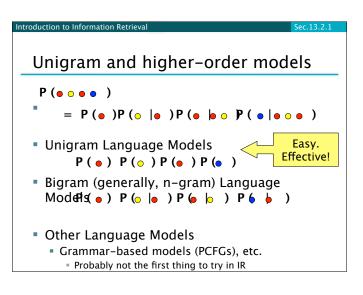


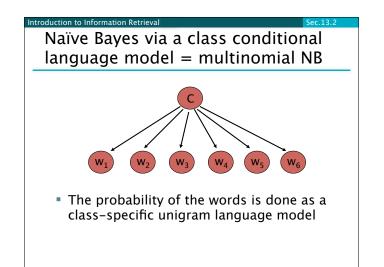


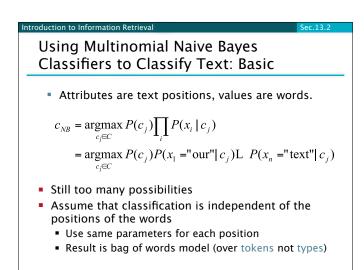




	-			5	
Model M2 0.2 the 0.0001 class 0.03 sayst 0.02 pleaseth 0.1 yon	the 0.2 0.2	class 0.01 0.0001	pleaseth 0.0001 0.02	yon 0.0001 0.1	maiden 0.0005 0.01
	Model M2 0.2 the 0.0001 class 0.03 sayst 0.02 pleaseth	Model M2 0.2 the 0.0001 class 0.03 sayst 0.02 pleaseth 0.1 yon	Model M2 0.2 the 0.0001 class 0.02 pleaseth 0.1 yon	Model M2 0.2 the 0.0001 class 0.02 pleaseth 0.1 yonthe the class the class 	Model M2





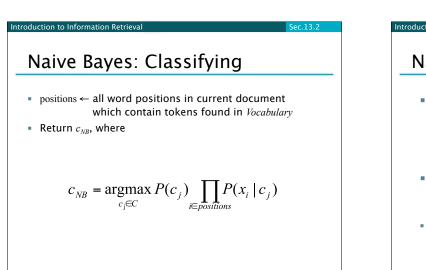


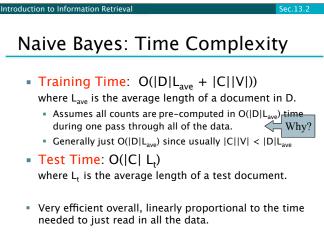
Naive Bayes and Language Modeling

- Naïve Bayes classifiers can use any sort of feature
- URL, email address, dictionaries, network features
- But if, as in the previous slides
 - We use only word features
 - we use all of the words in the text (not a subset)
- Then
 - Naïve Bayes is basically the same as language modeling

Multinomial Naive Bayes: Learning

- From training corpus, extract Vocabulary
- Calculate required $P(c_i)$ and $P(x_k | c_i)$ terms
 - For each c_iin C do
 - docs_i \leftarrow subset of documents for which the target class is c_i
 - $docs_i$ $P(c_j) \neg \frac{1}{|\text{total } \# \text{ documents}|}$
 - Text_i ← single document containing all docs_i for each word x_k in Vocabulary
 - $n_k \leftarrow$ number of occurrences of x_k in $Text_i$
 - $P(x_k | c_j) \neg \frac{n_k + \alpha}{n + \alpha | Vocabulary |}$





Underflow Prevention: using logs

- Multiplying lots of probabilities, which are between 0 and 1 by definition, can result in floating-point underflow.
- Since log(xy) = log(x) + log(y), it is better to perform all computations by summing logs of probabilities rather than multiplying probabilities.
- Class with highest final un-normalized log probability score is still the most probable.

$$c_{NB} = \underset{c_j \in C}{\operatorname{argmax}} [\log P(c_j) + \sum_{i \in positions} \log P(x_i \mid c_j)]$$

Note that model is now just max of sum of weights...

	Do	Words	Class
Training	1	Chinese Beijing Chinese	с
	2	Chinese Chinese Shanghai	с
	3	Chinese Macao	с
	4	Tokyo Japan Chinese	j
Test	5	Chinese Chinese Chinese Tokyo	?

Two Naive Bayes Models

- Model 1: Multivariate Bernoulli
 - One feature X_w for each word in dictionary
 - for loop iterates over dictionary
 - X_w = true in document d if w appears in d
 - Naive Bayes assumption:
 - Given the document's topic, appearance of one word in the document tells us nothing about chances that another word appears
- This is the model used in the binary independence model in classic probabilistic relevance feedback on hand-classified data

Two Models

- Model 2: Multinomial = Class conditional unigram
 - One feature X_i for each word pos in document
 feature's values are all words in dictionary
 - Value of X, is the word in position i
 - Naïve Bayes assumption:
 Given the document's topic, word in one position in the document tells us nothing about words in other positions
 - Second assumption: P(X) = Word appearance does not depend on position for all positions i,j, word w, and class c

Introduction to Information Retrieval

Parameter estimation

Multivariate Bernoulli model:

 $\hat{P}(X_w = t \mid c_j) = \frac{\text{fraction of documents of topic } c_j}{\text{in which word w appears}}$

Multinomial model:

 $\hat{P}(X_i = w \mid c_j) =$

duction to Information Retri

fraction of times in which word w appears among all words in documents of topic c_j

- Can create a mega-document for topic j by concatenating all documents in this topic
- Use frequency of w in mega-document

ntroduction to Information Retrieval

Which to use for classification?

- Multinomial vs Multivariate Bernoulli?
- Multinomial model is almost always more effective in text applications!
 See results figures later
- There has been exploration of multinomial naïve bayes variants which often work better in practice
 - Binarized multinomial Naïve Bayes, etc.
 - Topic of PA4

Feature Selection: Why?

- Text collections have a large number of features
 - 10,000 1,000,000 unique words ... and more
- May make using a particular classifier feasible
 - Some classifiers can't deal with 1,000,000 features
- Reduces training time
 - Training time for some methods is quadratic or worse in the number of features
- Makes runtime models smaller and faster

Feature Selection: How?

Two ideas:

- Hypothesis testing statistics:
 - Are we confident that the value of one categorical variable is associated with the value of another
- Chi-square test (χ²)
- Information theory:
 - How much information does the value of one categorical variable give you about the value of another
 Mutual information
 - Mutual information
- They're similar, but χ² measures confidence in association, (based on available statistics), while MI measures extent of association (assuming perfect knowledge of probabilities)

The simplest feature selection method:
 Just use the commonest terms

- No particular foundation
- But it make sense why this works
 - They're the words that can be well-estimated and are most often available as evidence
- In practice, this is often 90% as good as better methods

ntroduction to Information Retriev

Feature selection for NB

- In general feature selection is necessary for multivariate Bernoulli NB.
- Otherwise you suffer from noise, multicounting
- "Feature selection" really means something different for multinomial NB. It means dictionary truncation
 - The multinomial NB model only has 1 feature
- This "feature selection" normally isn't needed for multinomial NB, but may help a

Evaluating Categorization

ntroduction to Information Retrieval

- Evaluation must be done on test data that are independent of the training data (usually a disjoint set of instances).
 - Sometimes use cross-validation (averaging results over multiple training and test splits of the overall data)
- It's easy to get good performance on a test set that was available to the learner during training (e.g., just memorize the test set).
- Measures: precision, recall, F1, classification accuracy
- Classification accuracy: c/n where n is the total number of test instances and c is the number of test instances correctly classified by the system.
 - Adequate if one class per document
 - Otherwise F measure for each class

oduction to Ir	nformation	Retrieval				Sec.13.6			
WebKB Experiment (1998)									
 Train 	dent, fa on ~5 nell, Was	,000 h	ourse,pi and-la ^{U.Texas, V}	roject beled v	we t Mi Mi CMI Criss Fault And Annual Criss Fault Annual Criss Fault Annual Criss Fault Annual Criss Fault	Market State (State State) State State (State) State (State) State State (State) State (State)			
• Resu	ts:udent	Faculty	Person	Project	Course	Departmt	1 A		
Extracted	180	66	246	99	28	1			
Correct	130	28	194	72	25	1			

79%

73%

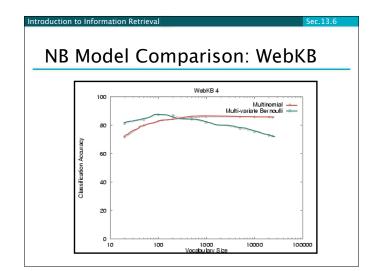
89%

100%

42%

Accuracy:

72%



Facu	Faculty		Students			Courses			
associate	0.00417		resume	0.00516		homework		0.00413	
chair	0.00303		advisor	0.00456		syllabus		0.00399	
member	0.00288		student	0.00387		assignments		0.00388	
ph	0.00287		working	0.00361		exam		0.00385	
director	0.00282		stuff	0.00359		grading		0.00381	
fax.	0.00279		links	0.00355		midterm		0.003	74
journal	0.00271		homepage	0.00345		рш		0.003	71
recent	0.00260		interests	0.00332	instructor		0.003	70	
received	0.00258		personal	0.00332		due		0.003	64
award	0.00250		favorite	0.00310		final		0.00355	
	Departments		Research Projects			Others			
	departmental 0.01246		investigators 0.00256			type	0.00164		
colloquia	0.01		group	0.00250	·	jan		0148	
epartment			members	0.00242	-	enter		0145	
seminars	0.00		researchers	0.00241	-	random		0142	
schedules	0.00	879	laboratory	0.00238	3	program	0.0	0136	
webmaster	r 0.00	879	develop	0.00201	L	net	0.0	0128	
events	0.00	826	related	0.00200)	time		0128	
facilities	0.00	807	arpa	0.00187	7	format	0.0	0124	
eople	0.00	772	affiliated	0.00184		access		0117	
postgradu	ate 0.00	764	project	0.0018;	3	begin	0.0	0116	

ntroduction to Information Retrieval

SpamAssassin

- Naïve Bayes has found a home in spam filtering
 - Paul Graham's A Plan for Spam
 A Naive Bayes-like classifier with weird parameter estimation
 - Widely used in spam filters
 - But many features beyond words:
 - black hole lists, etc.
 - particular hand-crafted text patterns

Naïve Bayes in Spam Filtering

- SpamAssassin Features:
- Basic (Naïve) Bayes spam probability
- Mentions: Generic Viagra
- Mentions millions of (dollar) ((dollar) NN,NNN,NNN.NN)
- Phrase: impress ... girl

ntroduction to Information Retr

- Phrase: 'Prestigious Non-Accredited Universities'
- From: starts with many numbers
- Subject is all capitals
- HTML has a low ratio of text to image area
- Relay in RBL, http://www.mail-abuse.com/enduserinfo_rbl.html
- RCVD line looks faked
 http://spamassassin.apache.org/tests_3_3_x.html

Naïve Bayes Posterior Probabilities

- Classification results of naïve Bayes (the class with maximum posterior probability) are usually fairly accurate.
- However, due to the inadequacy of the conditional independence assumption, the actual posterior-probability numerical estimates are not.
 - Output probabilities are commonly very close to 0 or 1.
- Correct estimation ⇒ accurate prediction, but correct probability estimation is NOT necessary for

Introduction to Information Retrieval

Naive Bayes is Not So Naive

- Very Fast Learning and Testing (basically just count the data)
- Low Storage requirements
- Very good in domains with many <u>equally important</u> features
- More robust to irrelevant features than many learning methods
- Irrelevant Features cancel each other without affecting results More robust to concept drift (changing class definition
- Naive Bayes won 1st and 2nd place in KDD-CUP 97 competition out of 16 systems
 - Goal: Financial services industry direct mail response prediction: Predict if the recipient of mail will actually respond

Resources for today's lecture

IIR 13

duction to Information Retrieva

- Fabrizio Sebastiani. Machine Learning in Automated Text Categorization. ACM Computing Surveys, 34(1):1-47, 2002.
- Yiming Yang & Xin Liu, A re-examination of text categorization methods. Proceedings of SIGIR, 1999.
- Andrew McCallum and Kamal Nigam. A Comparison of Event Models for Naive Bayes Text Classification. In AAAI/ICML-98 Workshop on Learning for Text Categorization, pp. 41-48.
- Tom Mitchell, Machine Learning. McGraw-Hill, 1997.
 Clear simple explanation of Naïve Bayes
- Open Calais: Automatic Semantic Tagging
 Free (but they can keep your data), provided by Thompson/Reuters (ex-ClearForest)
- Weka: A data mining software package that includes an implementation of Naive Bayes
- Reuters-21578 the most famous text classification evaluation set
 - Still widely used by lazy people (but now it's too small for