
Introduction to Information Retrieval

Introduction to
Information Retrieval

CS276: Information Retrieval and Web Search
Pandu Nayak and Prabhakar Raghavan

Lecture 6: Scoring, Term Weighting and the
Vector Space Model

Introduction to Information Retrieval

This lecture; IIR Sections 6.2-6.4.3
§ Ranked retrieval
§ Scoring documents
§ Term frequency
§ Collection statistics
§ Weighting schemes
§ Vector space scoring

Introduction to Information Retrieval

Ranked retrieval
§ Thus far, our queries have all been Boolean.

§ Documents either match or don’t.

§ Good for expert users with precise understanding of
their needs and the collection.
§ Also good for applications: Applications can easily

consume 1000s of results.

§ Not good for the majority of users.
§ Most users incapable of writing Boolean queries (or they

are, but they think it’s too much work).
§ Most users don’t want to wade through 1000s of results.

§ This is particularly true of web search.

Ch. 6

Introduction to Information Retrieval

Problem with Boolean search:
feast or famine
§ Boolean queries often result in either too few (=0) or

too many (1000s) results.
§ Query 1: “standard user dlink 650” → 200,000 hits
§ Query 2: “standard user dlink 650 no card found”: 0

hits
§ It takes a lot of skill to come up with a query that

produces a manageable number of hits.
§ AND gives too few; OR gives too many

Ch. 6

Introduction to Information Retrieval

Ranked retrieval models
§ Rather than a set of documents satisfying a query

expression, in ranked retrieval, the system returns an
ordering over the (top) documents in the collection
for a query

§ Free text queries: Rather than a query language of
operators and expressions, the user’s query is just
one or more words in a human language

§ In principle, there are two separate choices here, but
in practice, ranked retrieval has normally been
associated with free text queries and vice versa

5

Introduction to Information Retrieval

Feast or famine: not a problem in
ranked retrieval
§ When a system produces a ranked result set, large

result sets are not an issue
§ Indeed, the size of the result set is not an issue
§ We just show the top k (≈ 10) results
§ We don’t overwhelm the user

§ Premise: the ranking algorithm works

Ch. 6

Introduction to Information Retrieval

Scoring as the basis of ranked retrieval

§ We wish to return in order the documents most likely

to be useful to the searcher

§ How can we rank-order the documents in the

collection with respect to a query?

§ Assign a score – say in [0, 1] – to each document

§ This score measures how well document and query

“match”.

Ch. 6

Introduction to Information Retrieval

Take 1: Jaccard coefficient
§ A common measure of overlap of two sets A and B
§ jaccard(A,B) = |A ∩ B| / |A ∪ B|
§ jaccard(A,A) = 1
§ jaccard(A,B) = 0 if A ∩ B = 0
§ A and B don’t have to be the same size.
§ Always assigns a number between 0 and 1.

Ch. 6

Introduction to Information Retrieval

Jaccard coefficient: Scoring example
§ What is the query-document match score that the

Jaccard coefficient computes for each of the two
documents below?

§ Query: ides of march
§ Document 1: caesar died in march
§ Document 2: the long march

Ch. 6

Introduction to Information Retrieval

Issues with Jaccard for scoring
§ It doesn’t consider term frequency (how many times

a term occurs in a document)
§ Rare terms in a collection are more informative than

frequent terms. Jaccard doesn’t consider this
information

§ We need a more sophisticated way of normalizing for
length

Ch. 6

Introduction to Information Retrieval

Query-document matching scores
§ We need a way of assigning a score to a

query/document pair
§ Let’s start with a one-term query
§ If the query term does not occur in the document:

score should be 0
§ The more frequent the query term in the document,

the higher the score (should be)
§ We will look at a number of alternatives for this.

Ch. 6

Introduction to Information Retrieval

Recall (Lecture 2): Binary term-
document incidence matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

Each document is represented by a binary vector ∈ {0,1}|V|

Sec. 6.2

Introduction to Information Retrieval

Term-document count matrices
§ Consider the number of occurrences of a term in a

document:
§ Each document is a count vector in ℕv: a column below

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0
Brutus 4 157 0 1 0 0
Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0

Sec. 6.2

Introduction to Information Retrieval

Bag of words model
§ Vector representation doesn’t consider the ordering

of words in a document
§ John is quicker than Mary and Mary is quicker than

John have the same vectors
§ This is called the bag of words model.
§ In a sense, this is a step back: The positional index

was able to distinguish these two documents.

Introduction to Information Retrieval

Term frequency tf
§ The term frequency tft,d of term t in document d is

defined as the number of times that t occurs in d.
§ Note: Frequency means count in IR

§ We want to use tf when computing query-document
match scores. But how?

§ Raw term frequency is not what we want:
§ A document with 10 occurrences of the term is more

relevant than a document with 1 occurrence of the term.
§ But not 10 times more relevant.

§ Relevance does not increase proportionally with
term frequency.

Introduction to Information Retrieval

Log-frequency weighting
§ The log frequency weight of term t in d is

§ 0 → 0, 1 → 1, 2 → 1.3, 10 → 2, 1000 → 4, etc.
§ Score for a document-query pair: sum over terms t in

both q and d:
§ score

§ The score is 0 if none of the query terms is present in
the document.

î
í
ì >+

=
otherwise 0,

0 tfif, tflog 1
 10 t,dt,d

t,dw

å ÇÎ
+=

dqt dt) tflog (1 ,

Sec. 6.2

Introduction to Information Retrieval

Rare terms are more informative

§ Rare terms are more informative than frequent terms
§ Recall stop words

§ Consider a term in the query that is rare in the
collection (e.g., arachnocentric)

§ A document containing this term is very likely to be
relevant to the query arachnocentric

§ → We want a high weight for rare terms like
arachnocentric.

Sec. 6.2.1

Introduction to Information Retrieval

Collection vs. Document frequency
§ Collection frequency of t is the number of

occurrences of t in the collection
§ Document frequency of t is the number of

documents in which t occurs
§ Example:

§ Which word is for better search (gets higher weight)

Word Collection
frequency

Document
frequency

insurance 10440 3997

try 10422 8760

Sec. 6.2.1

Introduction to Information Retrieval

idf weight
§ dft is the document frequency of t: the number of

documents that contain t
§ dft is an inverse measure of the informativeness of t
§ dft £ N

§ We define the idf (inverse document frequency) of t
by

§ We use log (N/dft) instead of N/dft to “dampen” the effect
of idf.

)/df(log idf 10 tt N=

Sec. 6.2.1

Introduction to Information Retrieval

idf example, suppose N = 1 million
term dft idft

calpurnia 1 6

animal 100 4

sunday 1,000 3

fly 10,000 2

under 100,000 1

the 1,000,000 0

There is one idf value for each term t in a collection.

Sec. 6.2.1

)/df(log idf 10 tt N=

Introduction to Information Retrieval

Effect of idf on ranking
§ Does idf have an effect on ranking for one-term

queries, like
§ iPhone

§ idf has no effect on ranking one term queries
§ idf affects the ranking of documents for queries with at

least two terms
§ For the query capricious person, idf weighting makes

occurrences of capricious count for much more in
the final document ranking than occurrences of
person.

21

Introduction to Information Retrieval

tf-idf weighting

§ The tf-idf weight of a term is the product of its tf
weight and its idf weight.

§ Best known weighting scheme in information retrieval
§ Note: the “-” in tf-idf is a hyphen, not a minus sign!
§ Alternative names: tf.idf, tf x idf

§ Increases with the number of occurrences within a
document

§ Increases with the rarity of the term in the collection

)df/(log)tf1log(w 10,, tdt N
dt

´+=

Sec. 6.2.2

Introduction to Information Retrieval

Score for a document given a query

§ There are many variants
§ How “tf” is computed (with/without logs)
§ Whether the terms in the query are also weighted
§ …

23

Score(q,d) = tf.idft,dtÎqÇdå

Sec. 6.2.2

Introduction to Information Retrieval

Binary → count → weight matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35
Brutus 1.21 6.1 0 1 0 0
Caesar 8.59 2.54 0 1.51 0.25 0

Calpurnia 0 1.54 0 0 0 0
Cleopatra 2.85 0 0 0 0 0

mercy 1.51 0 1.9 0.12 5.25 0.88

worser 1.37 0 0.11 4.15 0.25 1.95

Each document is now represented by a real-valued
vector of tf-idf weights ∈ R|V|

Sec. 6.3

Introduction to Information Retrieval

Documents as vectors
§ So we have a |V|-dimensional vector space
§ Terms are axes of the space
§ Documents are points or vectors in this space
§ Very high-dimensional: tens of millions of

dimensions when you apply this to a web search
engine

§ These are very sparse vectors - most entries are zero.

Sec. 6.3

Introduction to Information Retrieval

Queries as vectors
§ Key idea 1: Do the same for queries: represent them

as vectors in the space
§ Key idea 2: Rank documents according to their

proximity to the query in this space
§ proximity = similarity of vectors
§ proximity ≈ inverse of distance

Sec. 6.3

Introduction to Information Retrieval

Formalizing vector space proximity
§ First cut: distance between two points

§ (= distance between the end points of the two vectors)
§ Euclidean distance?
§ Euclidean distance is a bad idea . . .
§ . . . because Euclidean distance is large for vectors of

different lengths.

Sec. 6.3

Introduction to Information Retrieval

Why distance is a bad idea

The Euclidean
distance between q
and d2 is large even
though the
distribution of terms
in the query q and the
distribution of
terms in the
document d2 are
very similar.

Sec. 6.3

Introduction to Information Retrieval

Use angle instead of distance
§ Thought experiment: take a document d and append

it to itself. Call this document dʹ.
§ “Semantically” d and dʹ have the same content
§ The Euclidean distance between the two documents

can be quite large
§ The angle between the two documents is 0,

corresponding to maximal similarity.

§ Key idea: Rank documents according to angle with
query.

Sec. 6.3

Introduction to Information Retrieval

From angles to cosines
§ The following two notions are equivalent.

§ Rank documents in decreasing order of the angle between
query and document

§ Rank documents in increasing order of
cosine(query,document)

§ Cosine is a monotonically decreasing function for the
interval [0o, 180o]

Sec. 6.3

Introduction to Information Retrieval

From angles to cosines

§ But how should we be computing cosines?

Sec. 6.3

Introduction to Information Retrieval

Length normalization
§ A vector can be (length-) normalized by dividing each

of its components by its length – for this we use the
L2 norm:

§ Dividing a vector by its L2 norm makes it a unit
(length) vector (on surface of unit hypersphere)

§ Effect on the two documents d and dʹ (d appended
to itself) from earlier slide: they have identical
vectors after length-normalization.
§ Long and short documents now have comparable weights

å=
i i
xx 2

2

!

Sec. 6.3

Introduction to Information Retrieval

cosine(query,document)

åå
å

==

==•=
•

=
V

i i
V

i i

V

i ii

dq

dq

d
d

q
q

dq
dqdq

1
2

1
2

1),cos(!

!

!
!

!!

!!!!

Dot product Unit vectors

qi is the weight of term i in the query
di is the weight of term i in the document

cos(q,d) is the cosine similarity of q and d … or,
equivalently, the cosine of the angle between q and d.

Sec. 6.3

Introduction to Information Retrieval

Cosine for length-normalized vectors
§ For length-normalized vectors, cosine similarity is

simply the dot product (or scalar product):

for q, d length-normalized.

34

!!

cos("!q ,
"!
d) =
"!q •
"!
d = qidii=1

Vå

Introduction to Information Retrieval

Cosine similarity illustrated

35

Introduction to Information Retrieval

Cosine similarity amongst 3 documents

term SaS PaP WH

affection 115 58 20

jealous 10 7 11

gossip 2 0 6

wuthering 0 0 38

How similar are
the novels
SaS: Sense and
Sensibility
PaP: Pride and
Prejudice, and
WH: Wuthering
Heights?

Term frequencies (counts)

Sec. 6.3

Note: To simplify this example, we don’t do idf weighting.

Introduction to Information Retrieval

3 documents example contd.
Log frequency weighting

term SaS PaP WH
affection 3.06 2.76 2.30
jealous 2.00 1.85 2.04
gossip 1.30 0 1.78
wuthering 0 0 2.58

After length normalization

term SaS PaP WH
affection 0.789 0.832 0.524
jealous 0.515 0.555 0.465
gossip 0.335 0 0.405
wuthering 0 0 0.588

cos(SaS,PaP) ≈ 0.94
cos(SaS,WH) ≈ 0.79
cos(PaP,WH) ≈ 0.69

Sec. 6.3

dot(SaS,PaP) ≈ 12.1
dot(SaS,WH) ≈ 13.4
dot(PaP,WH) ≈ 10.1

Introduction to Information Retrieval

Computing cosine scores

Sec. 6.3

Introduction to Information Retrieval

Computing cosine scores

§ Previous algorithm scores term-at-a-time (TAAT)

§ Algorithm can be adapted to scoring document-at-a-

time (DAAT)

§ Storing wt,d in each posting could be expensive

§ …because we’d have to store a floating point number

§ For tf-idf scoring, it suffices to store tft,d in the posting and

idft in the head of the postings list

§ Extracting the top K items can be done with a priority

queue (e.g., a heap)

Sec. 6.4

Introduction to Information Retrieval

tf-idf weighting has many variants

Sec. 6.4

Introduction to Information Retrieval

Weighting may differ in queries vs
documents
§ Many search engines allow for different weightings

for queries vs. documents
§ SMART Notation: denotes the combination in use in

an engine, with the notation ddd.qqq, using the
acronyms from the previous table

§ A very standard weighting scheme is: lnc.ltc
§ Document: logarithmic tf (l as first character), no idf

and cosine normalization

§ Query: logarithmic tf (l in leftmost column), idf (t in
second column), cosine normalization …

Sec. 6.4

Introduction to Information Retrieval

tf-idf example: lnc.ltc

Term Query Document Pro
d

tf-
raw

tf-wt df idf wt n’liz
e

tf-raw tf-wt wt n’liz
e

auto 0 0 5000 2.3 0 0 1 1 1 0.52 0
best 1 1 50000 1.3 1.3 0.34 0 0 0 0 0
car 1 1 10000 2.0 2.0 0.52 1 1 1 0.52 0.27
insurance 1 1 1000 3.0 3.0 0.78 2 1.3 1.3 0.68 0.53

Document: car insurance auto insurance
Query: best car insurance

Score = 0+0+0.27+0.53 = 0.8

Doc length =

12 + 02 +12 +1.32 »1.92

Sec. 6.4

Introduction to Information Retrieval

Summary – vector space ranking

§ Represent the query as a weighted tf-idf vector
§ Represent each document as a weighted tf-idf vector
§ Compute the cosine similarity score for the query

vector and each document vector
§ Rank documents with respect to the query by score
§ Return the top K (e.g., K = 10) to the user

Introduction to Information Retrieval

Resources for today’s lecture
§ IIR 6.2 – 6.4.3

§ http://www.miislita.com/information-retrieval-
tutorial/cosine-similarity-tutorial.html
§ Term weighting and cosine similarity tutorial for SEO folk!

Ch. 6

http://www.miislita.com/information-retrieval-tutorial/cosine-similarity-tutorial.html

