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Index construction
§ How do we construct an index?
§ What strategies can we use with limited main 

memory?
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§ Documents are parsed to extract words and these 
are saved with the Document ID.

I did enact Julius
Caesar I was killed 
i' the Capitol; 
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble
Brutus hath told you
Caesar was ambitious

Doc 2

Recall index construction
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Key step
§ After all documents have been 

parsed, the inverted file is 
sorted by terms. 

We focus on this sort step.
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RCV1: Our collection for this lecture
§ As an example for applying scalable index 

construction algorithms, we will use the 
Reuters RCV1 collection.
§ This is one year of Reuters newswire (part of 1995 

and 1996)

§ The collection isn’t really large enough, but it’s 
publicly available and is a plausible example.

Sec. 4.2 Introduction to Information Retrieval

A Reuters RCV1 document

Sec. 4.2
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Reuters RCV1 statistics
§ symbol statistic value
§ N documents 800,000
§ L avg. # tokens per doc 200
§ M terms (= word types) 400,000
§ avg. # bytes per token 6

(incl. spaces/punct.)

§ avg. # bytes per token 4.5
(without spaces/punct.)

§ avg. # bytes per term 7.5
§ non-positional postings 100,000,000

4.5 bytes per word token vs. 7.5 bytes per word type: why?

Sec. 4.2 Introduction to Information Retrieval

Sort-based index construction
§ As we build the index, we parse docs one at a time.

§ The final postings for any term are incomplete until the end.
§ At 8 bytes per (termID, docID), demands a lot of space for large 

collections.
§ T = 100,000,000 in the case of RCV1

§ So … we can do this in memory today, but typical collections 
are much larger.  E.g., the New York Times provides an index 
of >150 years of newswire

§ Thus: We need to store intermediate results on disk.

Sec. 4.2
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Scaling index construction
§ In-memory index construction does not scale

§ Can’t stuff entire collection into memory, sort, then write 
back

§ How can we construct an index for very large 
collections?

§ Taking into account hardware constraints. . .
§ Memory, disk, speed, etc.

§ Let’s review some hardware basics
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Hardware basics

§ Servers used in IR systems now typically have several 
GB of main memory, sometimes tens of GB. 

§ Available disk space is several (2–3) orders of 
magnitude larger.

§ Fault tolerance is very expensive: It’s much cheaper 
to use many regular machines rather than one fault 
tolerant machine.

Sec. 4.1
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Hardware basics
§ Access to data in memory is much faster than access 

to data on disk.
§ Disk seeks: No data is transferred from disk while the 

disk head is being positioned.
§ Therefore: Transferring one large chunk of data from 

disk to memory is faster than transferring many small 
chunks.

§ Disk I/O is block-based: Reading and writing of entire 
blocks (as opposed to smaller chunks).

§ Block sizes: 8KB to 256 KB.
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Hardware assumptions (circa 2007)

§ symbol statistic value
§ s average seek time 5 ms = 5 x 10−3 s

§ b transfer time per byte 0.02 μs = 2 x 10−8 s

§ processor’s clock rate 109 s−1

§ p low-level operation 0.01 μs = 10−8 s
(e.g., compare & swap a word)

§ size of main memory several GB

§ size of disk space 1 TB or more

Sec. 4.1
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Sort using disk as �memory�?
§ Can we use the same index construction algorithm 

for larger collections, but by using disk instead of 
memory?

§ No: Sorting T = 100,000,000 records on disk is too 
slow – too many disk seeks.

§ We need an external sorting algorithm.

Sec. 4.2 Introduction to Information Retrieval
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External memory indexing
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BSBI: Blocked sort-based Indexing 
(Sorting with fewer disk seeks)
§ 8-byte records (termID, docID)
§ These are generated as we parse docs

§ Must now sort 100M such 8-byte records by termID
§ Define a Block ~ 10M such records

§ Can easily fit a couple into memory
§ Will have 10 such blocks to start with

§ Basic idea of algorithm:
§ Accumulate postings for each block, sort, write to disk

§ Then merge the blocks into one long sorted order

Sec. 4.2 Introduction to Information Retrieval Sec. 4.2
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Sorting 10 blocks of 10M records
§ First, read each block and sort within: 

§ Quicksort takes O(N ln N) expected steps
§ In our case N=10M

§ 10 times this estimate – gives us 10 sorted runs of 
10M records each.

§ Done straightforwardly, need 2 copies of data on disk
§ But can optimize this
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How to merge the sorted runs?
§ Can do binary merges, with a merge tree of log210 = 4 layers.
§ During each layer, read into memory runs in blocks of 10M, 

merge, write back.

Sec. 4.2
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How to merge the sorted runs?
§ But it is more efficient to do a multi-way merge, where you 

are reading from all blocks simultaneously
§ Open all block files simultaneously and maintain a read 

buffer for each one and a write buffer for the output file
§ In each iteration, pick the lowest termID that hasn’t been

processed using a priority queue
§ Merge all postings lists for that termID and write it out

§ Providing you read decent-sized chunks of each block into 
memory and then write out a decent-sized output chunk, 
then you’re not killed by disk seeks

Sec. 4.2 Introduction to Information Retrieval

Remaining problem with sort-based 
algorithm
§ Our assumption was: we can keep the dictionary in 

memory.
§ We need the dictionary (which grows dynamically) in 

order to implement a term to termID mapping.

Sec. 4.3

Introduction to Information Retrieval

SPIMI: 
Single-pass in-memory indexing

§ Key idea 1: Generate separate dictionaries for each 
block – no need to maintain term-termID mapping 
across blocks.

§ Key idea 2: Don’t sort. Accumulate postings in 
postings lists as they occur.

§ With these two ideas we can generate a complete 
inverted index for each block.

§ These separate indexes can then be merged into one 
big index.
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SPIMI-Invert

§ Merging of blocks is analogous to BSBI.

Sec. 4.3
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SPIMI in action

23

Input token Dictionary
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SPIMI: Compression
§ Compression makes SPIMI even more efficient.

§ Compression of terms
§ Compression of postings

§ More on this later …

Sec. 4.3

Original publication on SPIMI: Heinz and Zobel (2003)
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Distributed indexing
§ For web-scale indexing (don�t try this at home!):

must use a distributed computing cluster
§ Individual machines are fault-prone

§ Can unpredictably slow down or fail
§ How do we exploit such a pool of machines?

Sec. 4.4
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Web search engine data centers
§ Web search data centers (Google, Bing, Baidu) 

mainly contain commodity machines.
§ Data centers are distributed around the world.
§ Estimate: Google ~1 million servers, 3 million 

processors/cores (Gartner 2007)
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Massive data centers
§ If in a non-fault-tolerant system with 1000 nodes, 

each node has 99.9% uptime, what is the uptime of 
the entire system?

§ Answer: 37% - meaning, 63% of the time one or 
more servers is down.

§ Exercise: Calculate the number of servers failing per 
minute for an installation of 1 million servers.

Sec. 4.4
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Distributed indexing
§ Maintain a master machine directing the indexing job 

– considered �safe�.
§ Break up indexing into sets of (parallel) tasks.
§ Master machine assigns each task to an idle machine 

from a pool.
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Parallel tasks
§ We will use two sets of parallel tasks

§ Parsers
§ Inverters

§ Break the input document collection into splits
§ Each split is a subset of documents (corresponding to 

blocks in BSBI/SPIMI)

Sec. 4.4
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Data flow

splits

Parser

Parser

Parser

Master

a-f g-p q-z

a-f g-p q-z

a-f g-p q-z

Inverter

Inverter

Inverter

Postings

a-f

g-p

q-z

assign assign

Map
phase

Segment files Reduce
phase
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Parsers
§ Master assigns a split to an idle parser machine
§ Parser reads a document at a time and emits 

(term, doc) pairs
§ Parser writes pairs into j partitions
§ Example: Each partition is for a range of terms’ first 

letters
§ (e.g., a-f, g-p, q-z) – here j = 3.

§ Now to complete the index inversion

Sec. 4.4
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Inverters
§ An inverter collects all (term,doc) pairs (= postings) 

for one term-partition.
§ Sorts and writes to postings lists

Sec. 4.4 Introduction to Information Retrieval

Example for index construction
Map:
d1 : C came, C c�ed. 
d2 : C died. 
→
<C,d1>, <came,d1>, <C,d1>, <c�ed, d1>, <C, d2>, <died,d2>

Reduce:
(<C,(d1,d1,d2)>, <died,(d2)>, <came,(d1)>, <c�ed,(d1)>)  
→  
(<C,(d1:2,d2:1)><died,(d2:1)>, <came,(d1:1)>,<c�ed,(d1:1)>)34

Caesar conquered

Introduction to Information Retrieval

Index construction
§ Index construction was just one phase.
§ Another phase: transforming a term-partitioned 

index into a document-partitioned index.
§ Term-partitioned: one machine handles a subrange of 

terms
§ Document-partitioned: one machine handles a subrange of 

documents
§ As we�ll discuss in the web part of the course, most 

search engines use a document-partitioned index … 
better load balancing, etc.
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MapReduce
§ The index construction algorithm we just described is 

an instance of MapReduce.
§ MapReduce (Dean and Ghemawat 2004) is a robust 

and conceptually simple framework for distributed 
computing …

§ … without having to write code for the distribution 
part.

§ They describe the Google indexing system (ca. 2002) 
as consisting of a number of phases, each 
implemented in MapReduce.

Sec. 4.4
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Schema for index construction in 
MapReduce
§ Schema of map and reduce functions
§ map: input → list(k, v)     reduce: (k,list(v)) → output
§ Instantiation of the schema for index construction
§ map: collection → list(termID, docID)
§ reduce: (<termID1, list(docID)>, <termID2, list(docID)>, …) → 

(postings list1, postings list2, …)

Sec. 4.4 Introduction to Information Retrieval
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Dynamic indexing
§ Up to now, we have assumed that collections are 

static.
§ They rarely are: 

§ Documents come in over time and need to be inserted.
§ Documents are deleted and modified.

§ This means that the dictionary and postings lists have 
to be modified:
§ Postings updates for terms already in dictionary
§ New terms added to dictionary
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Simplest approach
§ Maintain �big�main index
§ New docs go into �small� auxiliary index
§ Search across both, merge results
§ Deletions

§ Invalidation bit-vector for deleted docs
§ Filter docs output on a search result by this invalidation 

bit-vector
§ Periodically, re-index into one main index

Sec. 4.5
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Issues with main and auxiliary indexes
§ Problem of frequent merges – you touch stuff a lot
§ Poor performance during merge
§ Actually:

§ Merging of the auxiliary index into the main index is efficient if we 
keep a separate file for each postings list.

§ Merge is the same as a simple append.
§ But then we would need a lot of files – inefficient for OS.

§ Assumption for the rest of the lecture: The index is one big 
file.

§ In reality: Use a scheme somewhere in between (e.g., split 
very large postings lists, collect postings lists of length 1 in one 
file etc.)
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Logarithmic merge
§ Maintain a series of indexes, each twice as large as 

the previous one
§ At any time, some of these powers of 2 are instantiated

§ Keep smallest (Z0) in memory
§ Larger ones (I0, I1, …) on disk
§ If Z0 gets too big (> n), write to disk as I0
§ or merge with I0 (if I0 already exists) as Z1

§ Either write merge Z1 to disk as I1 (if no I1)
§ Or merge with I1 to form Z2

Sec. 4.5
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Logarithmic merge in action

43
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Logarithmic merge
§ Auxiliary and main index: 

§ T/n merges where T is # of postings and n is size of auxiliary
§ Index construction time is O(T2/n) as in the worst case a 

posting is touched T/n times

§ Logarithmic merge: Each posting is merged at most 
O(log (T/n)) times, so complexity is O(T log (T/n))

§ So logarithmic merge is much more efficient for index 
construction

§ But query processing now requires the merging of 
O(log (T/n)) indexes
§ Whereas it is O(1) if you just have a main and auxiliary index

Sec. 4.5 Introduction to Information Retrieval

Further issues with multiple indexes
§ Collection-wide statistics are hard to maintain
§ E.g., when we speak of spell-correction: which of 

several corrected alternatives do we present to the 
user?
§ We may want to pick the one with the most hits
§ How do we maintain the top ones with multiple indexes 

and invalidation bit vectors?
§ One possibility: ignore everything but the main index for 

such ordering
§ Will see more such statistics used in results ranking

Sec. 4.5
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Dynamic indexing at search engines
§ All the large search engines now do dynamic 

indexing
§ Their indices have frequent incremental changes

§ News items, blogs, new topical web pages
§ But (sometimes/typically) they also periodically 

reconstruct the index from scratch
§ Query processing is then switched to the new index, and 

the old index is deleted
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Earlybird: Real-time search at Twitter
§ Requirements for real-time search

§ Low latency, high throughput query evaluation
§ High ingestion rate and immediate data availability
§ Concurrent reads and writes of the index
§ Dominance of temporal signal

48
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Earlybird: Index organization
§ Earlybird consists of multiple index segments

§ Each segment is relatively small, holding up to 223 tweets
§ Each posting in a segment is a 32 bit word: 24 bits for the

tweet id and 8 bits for the position in the tweet

§ Only one segment can be written to at any given time
§ Small enough to be in memory
§ New postings are simply appended to the postings list
§ But the postings list is traversed backwards to prioritize 

newer tweets

§ The remaining segments are optimized for read-only
§ Postings sorted in reverse chronological order (newest first)

49
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Other sorts of indexes
§ Positional indexes

§ Same sort of sorting problem … just larger
§ Building character n-gram indexes:

§ As text is parsed, enumerate n-grams.
§ For each n-gram, need pointers to all dictionary terms 

containing it – the �postings�

Why?

Sec. 4.5
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Resources for today’s lecture

§ Chapter 4 of IIR

§ MG Chapter 5

§ Original publication on MapReduce: Dean and 
Ghemawat (2004)

§ Original publication on SPIMI: Heinz and Zobel (2003)

§ Earlybird: Busch et al, ICDE 2012
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