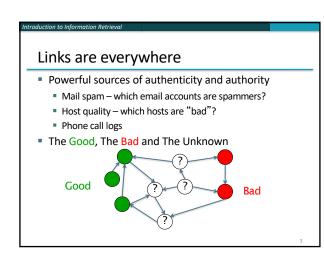
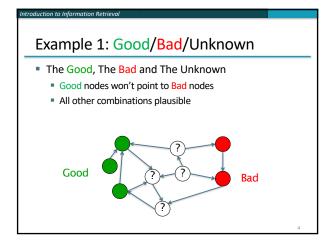
Introduction to Information Retrieval

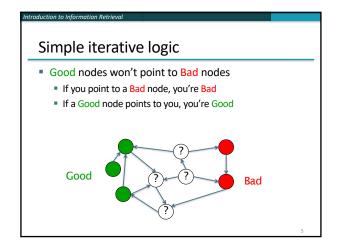
CS276 Information Retrieval and Web Search Chris Manning and Pandu Nayak Link analysis

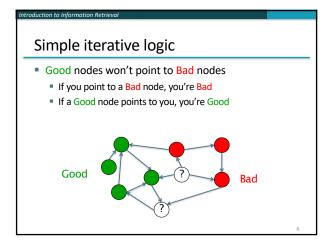
Today's lecture – hypertext and links

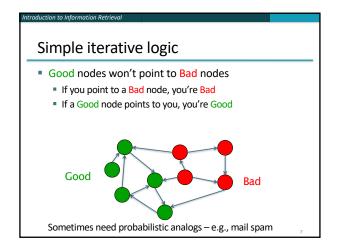
- We look beyond the *content* of documents
 We begin to look at the hyperlinks between them
- Address questions like
 - Do the links represent a conferral of authority to some pages? Is this useful for ranking?
 - How likely is it that a page pointed to by the CERN home page is about high energy physics
- Big application areas
 - The Web
 - Email
 - Social networks

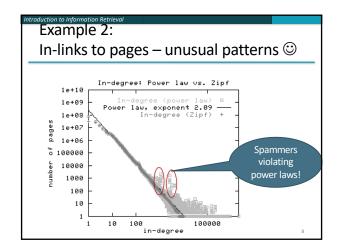










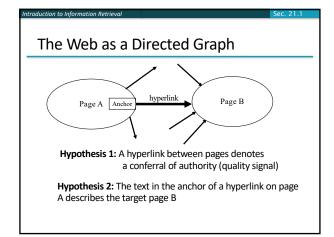


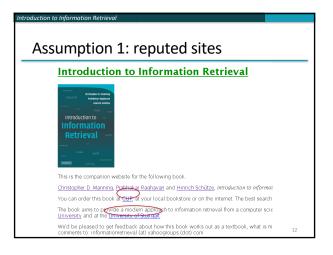
Many other examples of link analysis

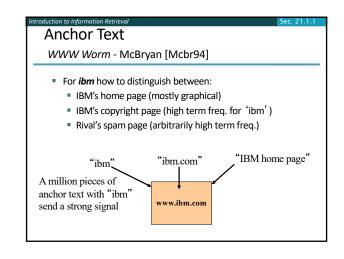
- Social networks are a rich source of grouping behavior
- E.g., Shoppers' affinity Goel+Goldstein 2010
 Consumers whose friends spend a lot, spend a lot themselves
- http://www.cs.cornell.edu/home/kleinber/networks-book/____
- See cs224w

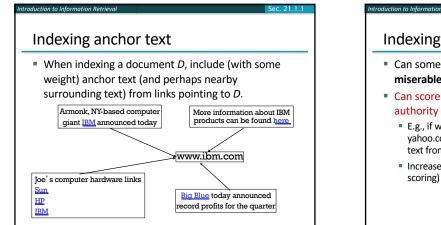
Our primary interest in this course

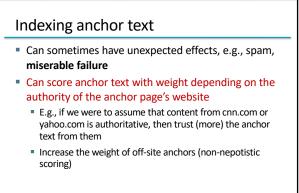
- Link analysis additions to IR functionality thus far based purely on text
 - Scoring and ranking
 - Link-based clustering topical structure from links
 - Links as features in classification documents that link to one another are likely to be on the same subject
- Crawling
 - Based on the links seen, where do we crawl next?

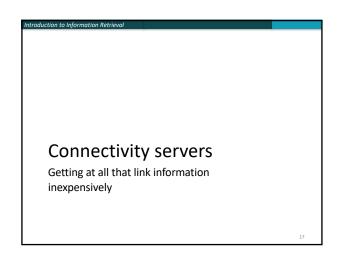


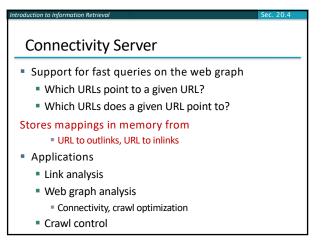












Boldi and Vigna 2004

- http://www2004.org/proceedings/docs/1p595.pdf
- Webgraph set of algorithms and a java implementation
- Fundamental goal maintain node adjacency lists in memory
 - For this, compressing the adjacency lists is the critical component

Adjacency lists

- The set of neighbors of a node
- Assume each URL represented by an integer
- E.g., for a 4 billion page web, need 32 bits per node ... and now there are definitely > 4B pages
- Naively, this demands <u>64 bits</u> to represent each hyperlink
- Boldi/Vigna get down to an average of ~3 bits/link
 - Further work achieves 2 bits/link

Adjacency list compression

- Properties exploited in compression:
 - Similarity (between lists)
 - Locality (many links from a page go to "nearby" pages)
 - Use gap encoding in sorted lists
 - Distribution of gap values

Main ideas of Boldi/Vigna

- Consider lexicographically ordered list of all URLs, e.g.,
 - www.stanford.edu/alchemy
 - www.stanford.edu/biology
 - www.stanford.edu/biology/plant_
 - www.stanford.edu/biology/plant/copyright_
 - www.stanford.edu/biology/plant/copyright
 www.stanford.edu/biology/plant/people_
 - www.stanford.edu/chemistry_

Boldi/Vigna

- Each of these URLs has an adjacency list
- Main idea: due to templates, the adjacency list of a node is <u>similar</u> to one of the <u>7</u> preceding URLs in the lexicographic ordering ... or else encoded anew
- Express adjacency list in terms of one of these
- E.g., consider these adjacency lists
 - 1, 2, 4, 8, 16, 32, 64
 - 1, 4, 9 16, 25, 36, 49, 64
 - 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144

1, 4, 8, 16, 25, 36, 49, 64 Encode as (-2), remove 9, add 8

Gap encodings

- Given a sorted list of integers x, y, z, ..., represent by x, y-x, z-y, ...
- Compress each integer using a code
 - γ code Number of bits = 1 + 2 $\lfloor \lg x \rfloor$
 - δ code: ...
 - Information theoretic bound: 1 + [lg x] bits
 - ζ code: Works well for integers from a power law [Boldi, Vigna: Data Compression Conf. 2004]

Main advantages of BV

- Depends only on locality in a canonical ordering
 Lexicographic ordering works well for the web
- Adjacency queries can be answered very efficiently
 - To fetch out-neighbors, trace back the chain of prototypes
 - This chain is typically short in practice (since similarity is mostly intra-host)
 - Can also explicitly limit the length of the chain during encoding
- Easy to implement one-pass algorithm

Link analysis: Pagerank

troduction to Information Retrieval

Citation Analysis

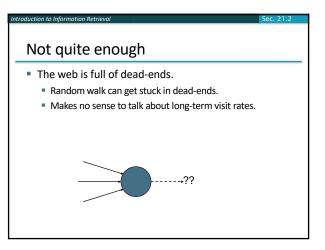
- Citation frequency
- Bibliographic coupling frequency
 Articles that co-cite the same articles are related
- Citation indexing
 Where there exists a horizontal h
- Who is this author cited by? (Garfield 1972)
 Pagerank preview: Pinsker and Narin '60s
 - Asked: which journals are authoritative?

The web isn't scholarly citation

- Millions of participants, each with self interests
- Spamming is widespread
- Once search engines began to use links for ranking (roughly 1998), link spam grew
 - You can join a *link farm* a group of websites that heavily link to one another

Pagerank scoring

- Imagine a user doing a random walk on web pages:
 Start at a random page
 - Start at a random page
 At each step, go out of the
 - current page along one of the links on that page, equiprobably
- "In the long run" each page has a long-term visit rate – use this as the page's score
- Variant: rather than equiprobable, use text and link information to have probability of following a link: intelligent surfer [Richardson and Domingos 2001]

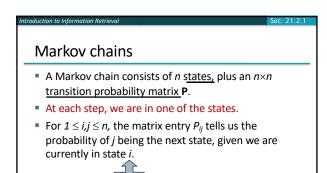


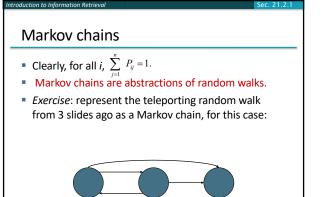
Teleporting

- At a dead end, jump to a random web page.
- At any non-dead end, with probability 10%, jump to a random web page.
 - With remaining probability (90%), go out on a random link.
 - 10% a parameter.
 - "Teleportation" probability
 - Simulates a web users going somewhere else
 - Solves linear algebra problems....

Result of teleporting

- Now cannot get stuck locally.
- There is a long-term rate at which any page is visited (not obvious, will show this).
- How do we compute this visit rate?





- For any *ergodic* Markov chain, there is a unique <u>long-term visit rate</u> for each state.
 - Steady-state probability distribution.
- Over a long time-period, we visit each state in proportion to this rate.
- It doesn't matter where we start.
- Ergodic: no periodic patterns
 - Teleportation ensures ergodicity

Probability vectors • A probability (row) vector $\mathbf{x} = (x_1, \dots, x_n)$ tells us where the walk is at any point. • E.g., (000...1...000) means we're in state *i*. 1 *i n* More generally, the vector $\mathbf{x} = (x_1, \dots, x_n)$ means the walk is in state *i* with probability x_i . $\sum_{i=1}^{n} x_i = 1$.

Change in probability vector

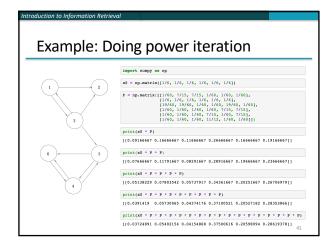
- If the probability vector is x = (x₁, ... x_n) at this step, what is it at the next step?
- Recall that row *i* of the transition prob. matrix P tells us where we go next from state *i*.
- So from x, our next state is distributed as xP
 - The one after that is xP², then xP³, etc.
 - Where) Does this converge?
 - Running this and finding out is "the power method"
 It's actually the method of choice, done with sparse P

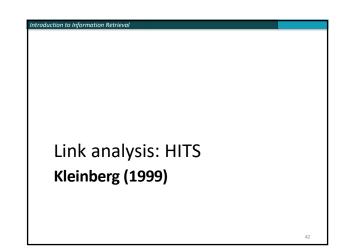
How do we compute this vector?

- Let a = (a₁, ... a_n) denote the row vector of steadystate probabilities.
- If our current position is described by **a**, then the next step is distributed as **aP**.
- But **a** is the steady state, so **a**=**aP**.
- Solving this matrix equation gives us **a**.
 - So a is the (left) eigenvector for P.
 - Corresponds to the "principal" eigenvector of P with the largest eigenvalue. (See: Perron-Frobenius theorem.)
 - Transition probability matrices always have largest eigenvalue 1.

Example: Mini web graph												
	Р	=	1 2 3 4 5 6	$\begin{pmatrix} 1 \\ 0 \\ 0 \\ 1/3 \\ 0 \\ 0 \\ 0 \end{pmatrix}$	2 1/2 0 1/3 0 0 0	0 0	0	$5 \\ 0 \\ 1/3 \\ 1/2 \\ 0 \\ 0$	$\begin{pmatrix} 6 \\ 0 \\ 0 \\ 0 \\ 1/2 \\ 1/2 \\ 0 \end{pmatrix}$			

Example: Fixin	ıg sir	ıks a	and	l tel	еро	rting	
$ar{\mathbf{P}} =$	$\begin{pmatrix} 0 \\ 1/6 \\ 1/3 \\ 0 \\ 0 \\ 0 \end{pmatrix}$	$1/2 \\ 1/6 \\ 1/3 \\ 0 \\ 0 \\ 0 \\ 0$	$1/2 \\ 1/6 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$0 \\ 1/6 \\ 0 \\ 0 \\ 1/2 \\ 1$	$0 \\ 1/6 \\ 1/3 \\ 1/2 \\ 0 \\ 0$	$\begin{array}{c} 0 \\ 1/6 \\ 0 \\ 1/2 \\ 1/2 \\ 0 \end{array} \right)$	
$\bar{\bar{\mathbf{P}}} = \alpha \bar{\mathbf{P}} + (1 - \alpha) \mathbf{e} \mathbf{e}^T / n =$	$\begin{pmatrix} 1/60\\ 1/6\\ 19/60\\ 1/60\\ 1/60\\ 1/60\\ 1/60 \end{pmatrix}$	7/1 1/ 19/ 1/6 1/6 1/6	15 7 6 1 60 1 60 1 60 1 60 1	7/15 1/6 ./60 ./60 ./60	1/60 1/6 1/60 1/60 7/15 11/12	1/60 1/6 19/60 7/15 1/60 1/60	$\frac{1/60}{1/6} \\ \frac{1}{60} \\ \frac{7}{15} \\ \frac{7}{15} \\ \frac{1}{60} \\ \frac{40}{10} $



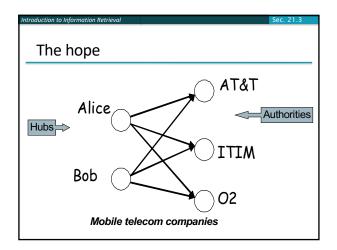


Hyperlink-Induced Topic Search (HITS)

- In response to a query, instead of an ordered list of pages each meeting the query, find two sets of interrelated pages:
 - Hub pages are good lists of links on a subject
 - e.g., "Bob's list of cancer-related links."
 - Authority pages occur recurrently on good hubs for the subject
- Best suited for "broad topic" queries rather than for page-finding queries
- Gets at a broader slice of common opinion

Hubs and Authorities

- Thus, a good hub page for a topic *points* to many authoritative pages for that topic.
- A good authority page for a topic is *pointed* to by many good hubs for that topic.
- Circular definition will turn this into an iterative computation.



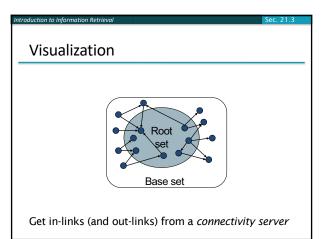
High-level scheme

- Extract from the web a <u>base set</u> of pages that *could* be good hubs or authorities.
- From these, identify a small set of top hub and authority pages;
 - \rightarrow iterative algorithm.

Base set

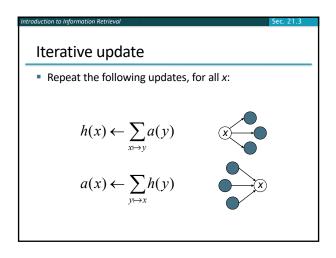
on to Information Retri

- Given text query (say *browser*), use a text index to get all pages containing *browser*.
- Call this the <u>root set</u> of pages.
- Add in any page that either
 - points to a page in the root set, or
 - is pointed to by a page in the root set.
- Call this the base set.



Distilling hubs and authorities

- Compute, for each page x in the base set, a hub score h(x) and an authority score a(x).
- Initialize: for all x, $h(x) \leftarrow 1$; $a(x) \leftarrow 1$;
- Iteratively update all h(x), a(x); ← Key
- After iterations
 - output pages with highest h() scores as top hubs
 - highest a() scores as top authorities.

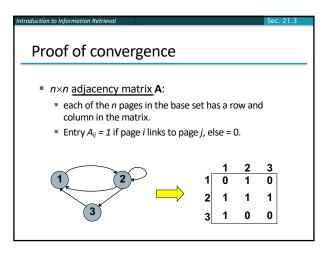


Scaling

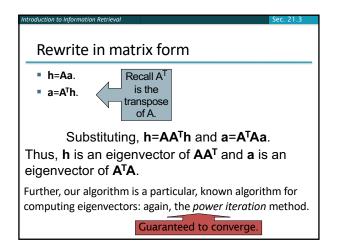
- To prevent the h() and a() values from getting too big, can scale down after each iteration.
- Scaling factor doesn't really matter:
 - we only care about the *relative* values of the scores.

How many iterations?

- Claim: relative values of scores will converge after a few iterations:
 - in fact, suitably scaled, h() and a() scores settle into a steady state!
 - proof of this comes later.
- In practice, ~5 iterations get you close to stability.



aduction to information Retrieval Sec. 21.3 Hub/authority vectors • View the hub scores h() and the authority scores a()as vectors with n components. • Recall the iterative updates $h(x) \leftarrow \sum_{x \mapsto y} a(y)$ $a(x) \leftarrow \sum_{y \mapsto x} h(y)$



(java) Authorities .328 http://www.gamelan.com/ Gamelan .251 http://java.sun.com/ JavaSoft Home Page .190 http://www.digitalfocus.com/... The Java Developer: How Do I ...

- .190 http://lightyear.ncsa.uiuc.edu/;srp/java/ javabooks.html
- .183 http://sunsite.unc.edu/javafaq/javafaq.html comp.lang.java FAQ

(censorship) Authorities

- .378 http://www.eff.org/ EFFweb—The Electronic Frontier Foundation
 .344 http://www.eff.org/blueribbon.html The Blue Ribbon Campaign
- for Online Free Speech
 .238 http://www.cdt.org/ The Center for Democracy and Technology
- .235 http://www.vtw.org/ Voters Telecommunications Watch
- .218 http://www.aclu.org/ ACLU: American Civil Liberties Union
- .213 http://www.acid.org/ Acto: American civil Ebernes onion

Issues

Topic Drift

on to Information Retr

- Off-topic pages can cause off-topic "authorities" to be returned
 - E.g., the neighborhood graph can be about a "super topic"
- Mutually Reinforcing Affiliates
 - Affiliated pages/sites can boost each others' scores
 - Linkage between affiliated pages is not a useful signal

Resources

IIR Chap 21

- Kleinberg, Jon (1999). <u>Authoritative sources in a hyperlinked</u> environment. *Journal of the ACM*. **46** (5): 604–632.
- http://www2004.org/proceedings/docs/1p309.pdf
- http://www2004.org/proceedings/docs/1p595.pdf
- <u>http://www2003.org/cdrom/papers/refereed/p270/kamvar-270-xhtml/index.html</u>
- http://www2003.org/cdrom/papers/refereed/p641/xhtml/p6 41-mccurley.html
- The WebGraph framework I: Compression techniques (Boldi et al. 2004)