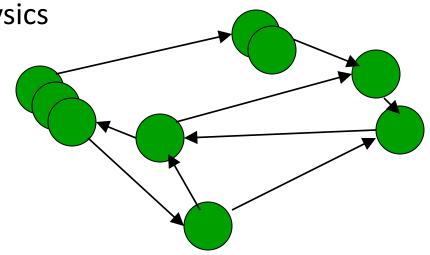
Introduction to Information Retrieval

CS276

Information Retrieval and Web Search Chris Manning and Pandu Nayak Link analysis

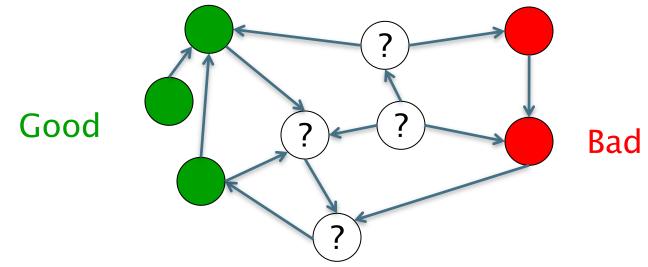
Today's lecture – hypertext and links

- We look beyond the *content* of documents
 - We begin to look at the hyperlinks between them
- Address questions like
 - Do the links represent a conferral of authority to some pages? Is this useful for ranking?
 - How likely is it that a page pointed to by the CERN home page is about high energy physics
- Big application areas
 - The Web
 - Email
 - Social networks



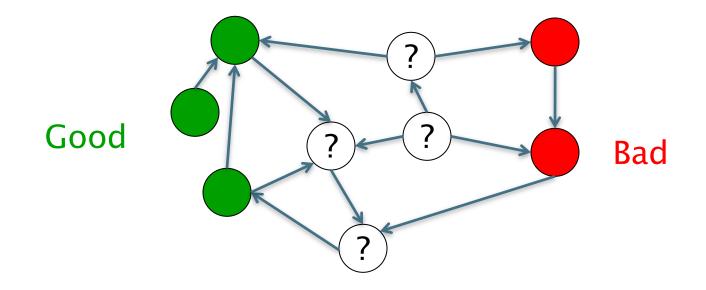
Links are everywhere

- Powerful sources of authenticity and authority
 - Mail spam which email accounts are spammers?
 - Host quality which hosts are "bad"?
 - Phone call logs
- The Good, The Bad and The Unknown



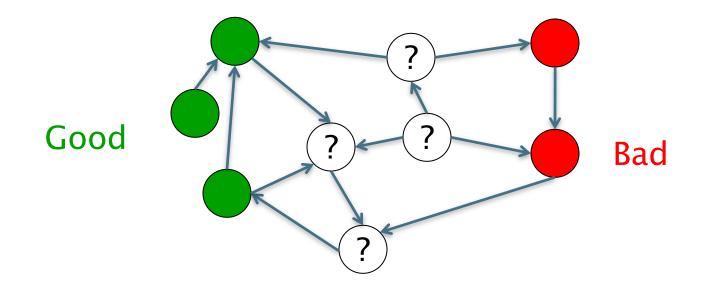
Example 1: Good/Bad/Unknown

- The Good, The Bad and The Unknown
 - Good nodes won't point to Bad nodes
 - All other combinations plausible



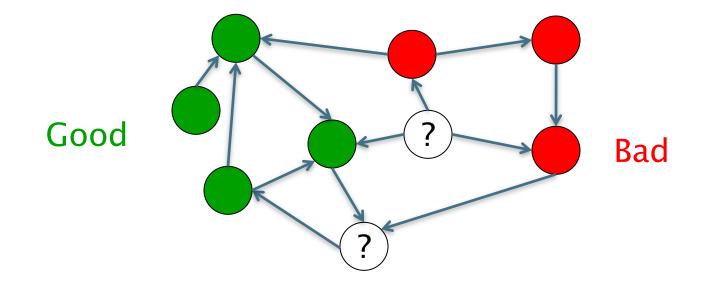
Simple iterative logic

- Good nodes won't point to Bad nodes
 - If you point to a Bad node, you're Bad
 - If a Good node points to you, you're Good



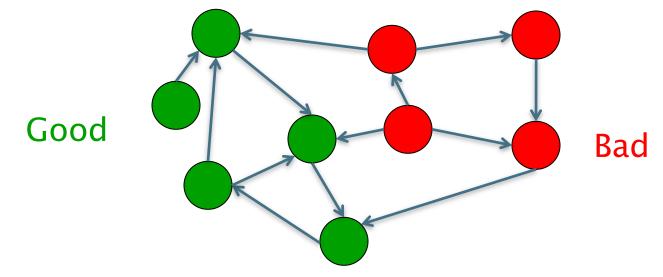
Simple iterative logic

- Good nodes won't point to Bad nodes
 - If you point to a Bad node, you're Bad
 - If a Good node points to you, you're Good



Simple iterative logic

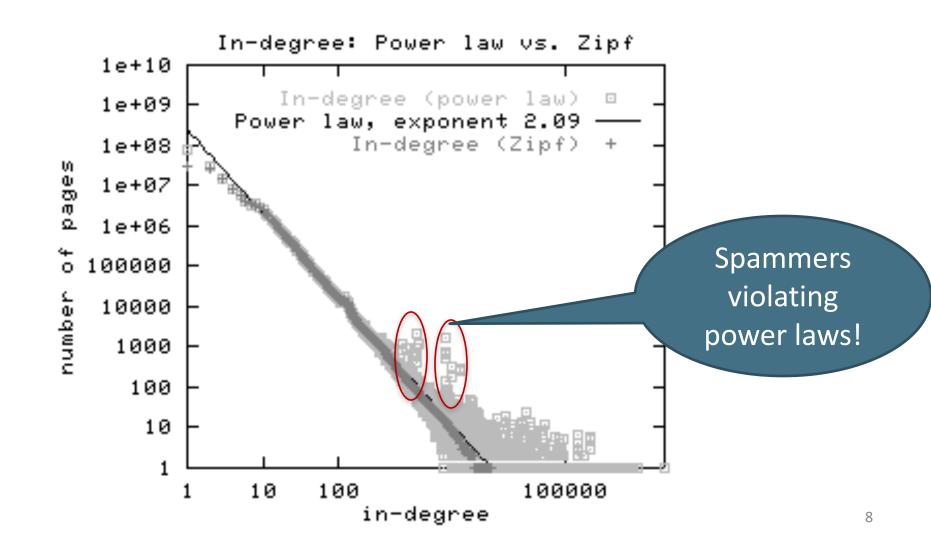
- Good nodes won't point to Bad nodes
 - If you point to a Bad node, you're Bad
 - If a Good node points to you, you're Good



Sometimes need probabilistic analogs – e.g., mail spam

Introduction to Information Retrieval

Example 2: In-links to pages – unusual patterns ⓒ



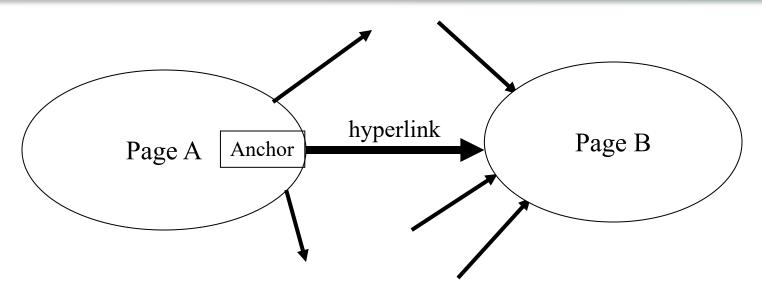
Many other examples of link analysis

- Social networks are a rich source of grouping behavior
- E.g., Shoppers' affinity Goel+Goldstein 2010
 - Consumers whose friends spend a lot, spend a lot themselves
- <u>http://www.cs.cornell.edu/home/kleinber/networks-book/</u>
- See cs224w

Our primary interest in this course

- Link analysis additions to IR functionality thus far based purely on text
 - Scoring and ranking
 - Link-based clustering topical structure from links
 - Links as features in classification documents that link to one another are likely to be on the same subject
- Crawling
 - Based on the links seen, where do we crawl next?

The Web as a Directed Graph

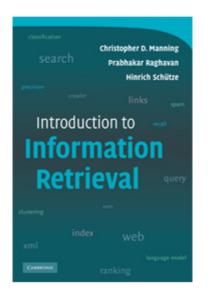


Hypothesis 1: A hyperlink between pages denotes a conferral of authority (quality signal)

Hypothesis 2: The text in the anchor of a hyperlink on page A describes the target page B

Assumption 1: reputed sites

Introduction to Information Retrieval



This is the companion website for the following book.

Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze, Introduction to Informat You can order this book at <u>CUP</u>, at your local bookstore or on the internet. The best search

The book aims to provide a modern approach to information retrieval from a computer scie <u>University</u> and at the <u>University of Stuttgart</u>.

We'd be pleased to get feedback about how this book works out as a textbook, what is m comments to: informationretrieval (at) yahoogroups (dot) com

Faculty and Staff

(Internal use)

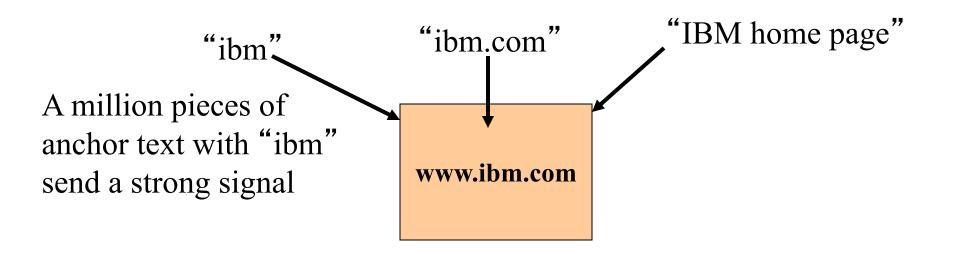
Assumption 2: annotation of target

東北大学入学式(平成23年5月)

Anchor Text

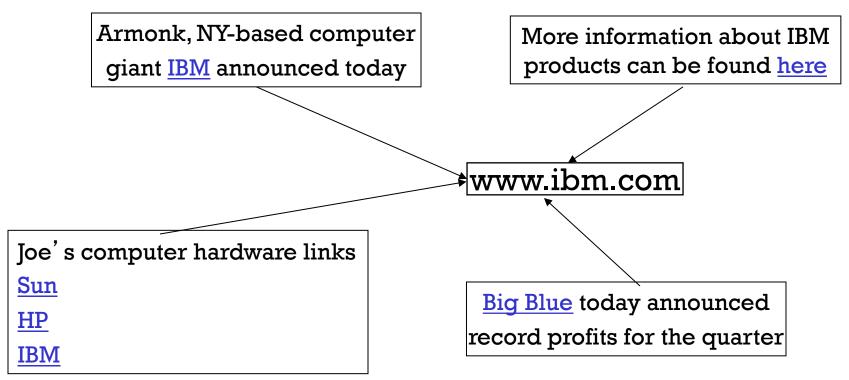
WWW Worm - McBryan [Mcbr94]

- For *ibm* how to distinguish between:
 - IBM's home page (mostly graphical)
 - IBM's copyright page (high term freq. for 'ibm')
 - Rival's spam page (arbitrarily high term freq.)



Indexing anchor text

 When indexing a document *D*, include (with some weight) anchor text (and perhaps nearby surrounding text) from links pointing to *D*.



Indexing anchor text

- Can sometimes have unexpected effects, e.g., spam, miserable failure
- Can score anchor text with weight depending on the authority of the anchor page's website
 - E.g., if we were to assume that content from cnn.com or yahoo.com is authoritative, then trust (more) the anchor text from them
 - Increase the weight of off-site anchors (non-nepotistic scoring)

Connectivity servers

Getting at all that link information inexpensively

Connectivity Server

- Support for fast queries on the web graph
 - Which URLs point to a given URL?
 - Which URLs does a given URL point to?
- Stores mappings in memory from
 - URL to outlinks, URL to inlinks
- Applications
 - Link analysis
 - Web graph analysis
 - Connectivity, crawl optimization
 - Crawl control

Boldi and Vigna 2004

- http://www2004.org/proceedings/docs/1p595.pdf
- Webgraph set of algorithms and a java implementation
- Fundamental goal maintain node adjacency lists in memory
 - For this, compressing the adjacency lists is the critical component

Adjacency lists

- The set of neighbors of a node
- Assume each URL represented by an integer
- E.g., for a 4 billion page web, need 32 bits per node ... and now there are definitely > 4B pages
- Naively, this demands <u>64 bits</u> to represent each hyperlink
- Boldi/Vigna get down to an average of ~3 bits/link
 - Further work achieves 2 bits/link

Adjacency list compression

- Properties exploited in compression:
 - Similarity (between lists)
 - Locality (many links from a page go to "nearby" pages)
 - Use gap encoding in sorted lists
 - Distribution of gap values

Main ideas of Boldi/Vigna

- Consider lexicographically ordered list of all URLs, e.g.,
 - www.stanford.edu/alchemy
 - www.stanford.edu/biology
 - www.stanford.edu/biology/plant
 - www.stanford.edu/biology/plant/copyright
 - www.stanford.edu/biology/plant/people
 - www.stanford.edu/chemistry

Boldi/Vigna

- Each of these URLs has an adjacency list
- Main idea: due to templates, the adjacency list of a node is <u>similar</u> to one of the <u>7</u> preceding URLs in the lexicographic ordering ... or else encoded anew
- Express adjacency list in terms of one of these
- E.g., consider these adjacency lists
 - 1, 2, 4, 8, 16, 32, 64
 - 1, 4, 9, 16, 25, 36, 49, 64
 - 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144
 - → 1, 4, 8, 16, 25, 36, 49, 64

Encode as (-2), remove 9, add 8

Gap encodings

- Given a sorted list of integers x, y, z, ..., represent by x, y-x, z-y, ...
- Compress each integer using a code
 - γ code Number of bits = 1 + 2 $\lfloor \lg x \rfloor$
 - δ code: ...
 - Information theoretic bound: 1 + [lg x] bits
 - ζ code: Works well for integers from a power law [Boldi, Vigna: Data Compression Conf. 2004]

Main advantages of BV

- Depends only on locality in a canonical ordering
 - Lexicographic ordering works well for the web
- Adjacency queries can be answered very efficiently
 - To fetch out-neighbors, trace back the chain of prototypes
 - This chain is typically short in practice (since similarity is mostly intra-host)
 - Can also explicitly limit the length of the chain during encoding
- Easy to implement one-pass algorithm

Link analysis: Pagerank

Citation Analysis

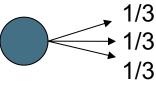
- Citation frequency
- Bibliographic coupling frequency
 - Articles that co-cite the same articles are related
- Citation indexing
 - Who is this author cited by? (Garfield 1972)
- Pagerank preview: Pinsker and Narin '60s
 - Asked: which journals are authoritative?

The web isn't scholarly citation

- Millions of participants, each with self interests
- Spamming is widespread
- Once search engines began to use links for ranking (roughly 1998), link spam grew
 - You can join a *link farm* a group of websites that heavily link to one another

Pagerank scoring

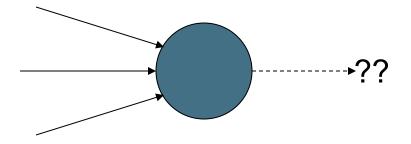
- Imagine a user doing a random walk on web pages:
 - Start at a random page
 - At each step, go out of the current page along one of the links on that page, equiprobably



- "In the long run" each page has a long-term visit rate – use this as the page's score
- Variant: rather than equiprobable, use text and link information to have probability of following a link: intelligent surfer [Richardson and Domingos 2001]

Not quite enough

- The web is full of dead-ends.
 - Random walk can get stuck in dead-ends.
 - Makes no sense to talk about long-term visit rates.



Teleporting

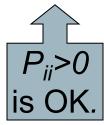
- At a dead end, jump to a random web page.
- At any non-dead end, with probability 10%, jump to a random web page.
 - With remaining probability (90%), go out on a random link.
 - 10% a parameter.
 - "Teleportation" probability
 - Simulates a web users going somewhere else
 - Solves linear algebra problems....

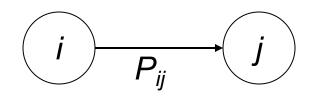
Result of teleporting

- Now cannot get stuck locally.
- There is a long-term rate at which any page is visited (not obvious, will show this).
- How do we compute this visit rate?

Markov chains

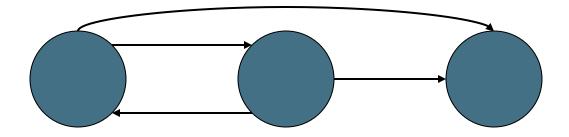
- A Markov chain consists of *n* states, plus an *n×n* transition probability matrix **P**.
- At each step, we are in one of the states.
- For 1 ≤ i,j ≤ n, the matrix entry P_{ij} tells us the probability of j being the next state, given we are currently in state i.





Markov chains

- Clearly, for all *i*, $\sum_{j=1}^{n} P_{ij} = 1$.
- Markov chains are abstractions of random walks.
- Exercise: represent the teleporting random walk from 3 slides ago as a Markov chain, for this case:



Ergodic Markov chains

- For any *ergodic* Markov chain, there is a unique <u>long-term visit rate</u> for each state.
 - Steady-state probability distribution.
- Over a long time-period, we visit each state in proportion to this rate.
- It doesn't matter where we start.

- Ergodic: no periodic patterns
 - Teleportation ensures ergodicity

Probability vectors

- A probability (row) vector x = (x₁, ... x_n) tells us where the walk is at any point.
- E.g., (000...1...000) means we're in state *i*.
 i n

n

More generally, the vector $\mathbf{x} = (x_1, \dots, x_n)$ means the walk is in state *i* with probability x_i .

$$\sum_{i=1}^{n} x_i = 1.$$

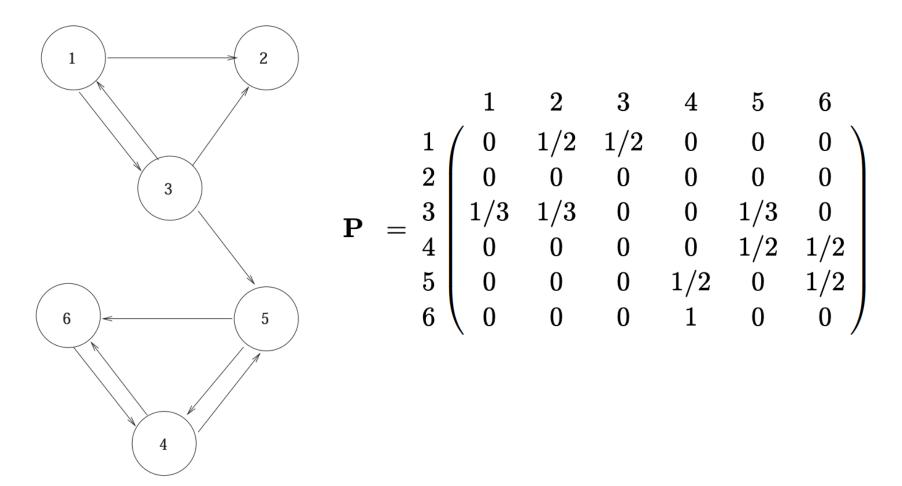
Change in probability vector

- If the probability vector is x = (x₁, ... x_n) at this step, what is it at the next step?
- Recall that row *i* of the transition prob. matrix P tells us where we go next from state *i*.
- So from x, our next state is distributed as xP
 - The one after that is xP², then xP³, etc.
 - Where) Does this converge?
 - Running this and finding out is "the power method"
 - It's actually the method of choice, done with sparse P

How do we compute this vector?

- Let **a** = (a₁, ... a_n) denote the row vector of steadystate probabilities.
- If our current position is described by a, then the next step is distributed as aP.
- But a is the steady state, so a=aP.
- Solving this matrix equation gives us a.
 - So a is the (left) eigenvector for P.
 - Corresponds to the "principal" eigenvector of P with the largest eigenvalue. (See: Perron-Frobenius theorem.)
 - Transition probability matrices always have largest eigenvalue 1.

Example: Mini web graph

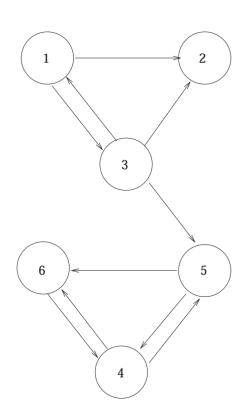


Example: Fixing sinks and teleporting

$$\bar{\mathbf{P}} = \begin{pmatrix} 0 & 1/2 & 1/2 & 0 & 0 & 0 \\ 1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 \\ 1/3 & 1/3 & 0 & 0 & 1/3 & 0 \\ 0 & 0 & 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & 0 & 1/2 & 0 & 1/2 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

$$\bar{\mathbf{P}} = \alpha \bar{\mathbf{P}} + (1 - \alpha) \mathbf{e} \mathbf{e}^T / n = \begin{pmatrix} 1/60 & 7/15 & 7/15 & 1/60 & 1/60 & 1/60 \\ 1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 \\ 19/60 & 19/60 & 1/60 & 1/60 & 19/60 & 1/60 \\ 1/60 & 1/60 & 1/60 & 1/60 & 7/15 & 7/15 \\ 1/60 & 1/60 & 1/60 & 1/60 & 7/15 & 1/60 & 7/15 \\ 1/60 & 1/60 & 1/60 & 11/12 & 1/60 & 1/60 \end{pmatrix}$$

Example: Doing power iteration



import numpy as np

x0 = np.matrix([1/6, 1/6, 1/6, 1/6, 1/6])

```
P = np.matrix([[1/60, 7/15, 7/15, 1/60, 1/60, 1/60], [1/6, 1/6, 1/6, 1/6, 1/6], [19/60, 19/60, 1/60, 1/60, 19/60, 1/60], [1/60, 1/60, 1/60, 1/60, 7/15, 7/15], [1/60, 1/60, 1/60, 7/15, 1/60, 7/15], [1/60, 1/60, 1/60, 11/12, 1/60, 1/60]])
```

print(x0 * P)

[[0.09166667 0.16666667 0.116666667 0.26666667 0.16666667 0.19166667]]

print(x0 * P * P)

[[0.07666667 0.11791667 0.08291667 0.28916667 0.19666667 0.23666667]]

print(x0 * P * P * P * P)

[[0.05138229 0.07803542 0.05737917 0.34361667 0.20251667 0.26706979]]

print(x0 * P * P)

[[0.0391419 0.05730065 0.04374176 0.37100521 0.20527182 0.28353866]]

 $[[0.03724891 \ 0.05402154 \ 0.04154868 \ 0.37500616 \ 0.20598094 \ 0.28619378]]$

Link analysis: HITS Kleinberg (1999)

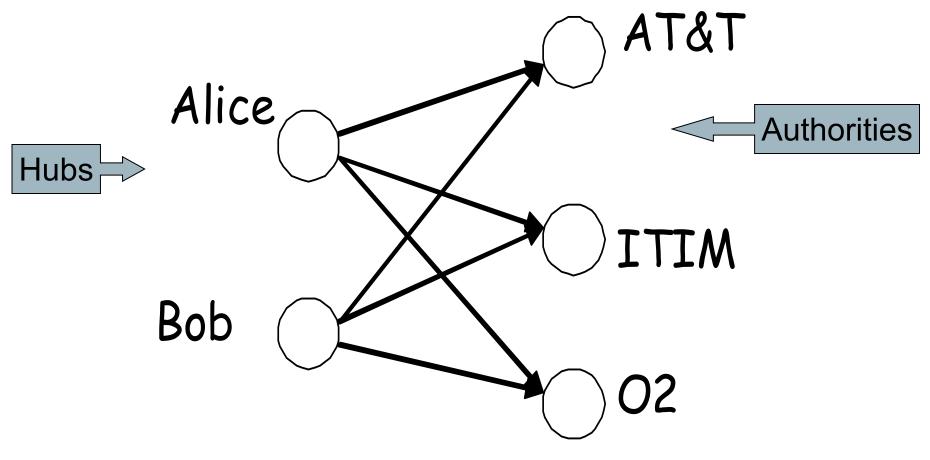
Hyperlink-Induced Topic Search (HITS)

- In response to a query, instead of an ordered list of pages each meeting the query, find <u>two</u> sets of interrelated pages:
 - *Hub pages* are good lists of links on a subject
 - e.g., "Bob's list of cancer-related links."
 - Authority pages occur recurrently on good hubs for the subject
- Best suited for "broad topic" queries rather than for page-finding queries
- Gets at a broader slice of common opinion

Hubs and Authorities

- Thus, a good hub page for a topic *points* to many authoritative pages for that topic.
- A good authority page for a topic is *pointed* to by many good hubs for that topic.
- Circular definition will turn this into an iterative computation.

The hope



Mobile telecom companies

High-level scheme

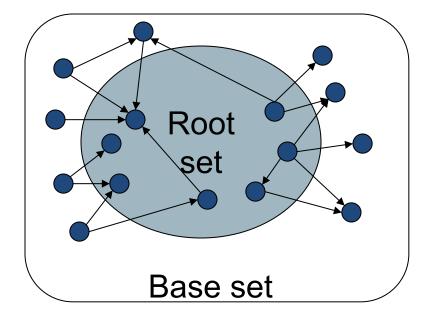
- Extract from the web a <u>base set</u> of pages that *could* be good hubs or authorities.
- From these, identify a small set of top hub and authority pages;

 \rightarrow iterative algorithm.

Base set

- Given text query (say *browser*), use a text index to get all pages containing *browser*.
 Call this the root set of pages.
- Add in any page that either
 - points to a page in the root set, or
 - is pointed to by a page in the root set.
- Call this the <u>base set</u>.

Visualization



Get in-links (and out-links) from a *connectivity server*

Distilling hubs and authorities

- Compute, for each page x in the base set, a <u>hub</u> <u>score</u> h(x) and an <u>authority score</u> a(x).
- Initialize: for all x, $h(x) \leftarrow 1$; $a(x) \leftarrow 1$;
- Iteratively update all h(x), a(x); Key
- After iterations
 - output pages with highest h() scores as top hubs
 - highest a() scores as top authorities.

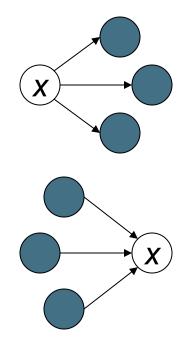
Sec. 21.3

Iterative update

Repeat the following updates, for all x:

 $h(x) \leftarrow \sum a(y)$ $x \mapsto v$

 $a(x) \leftarrow \sum h(y)$ $v \mapsto x$



Scaling

- To prevent the h() and a() values from getting too big, can scale down after each iteration.
- Scaling factor doesn't really matter:
 - we only care about the *relative* values of the scores.

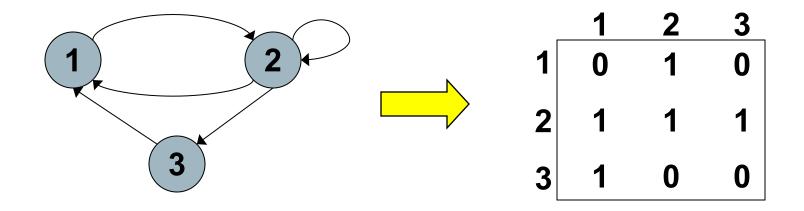
How many iterations?

- Claim: relative values of scores will converge after a few iterations:
 - In fact, suitably scaled, h() and a() scores settle into a steady state!
 - proof of this comes later.
- In practice, ~5 iterations get you close to stability.

Proof of convergence

n×n adjacency matrix A:

- each of the *n* pages in the base set has a row and column in the matrix.
- Entry $A_{ii} = 1$ if page *i* links to page *j*, else = 0.



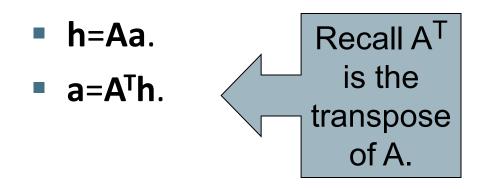
Hub/authority vectors

- View the hub scores h() and the authority scores a() as vectors with n components.
- Recall the iterative updates

$$h(x) \leftarrow \sum_{x \mapsto y} a(y)$$

$$a(x) \leftarrow \sum_{y \mapsto x} h(y)$$

Rewrite in matrix form



Substituting, $h=AA^Th$ and $a=A^TAa$. Thus, **h** is an eigenvector of AA^T and **a** is an eigenvector of A^TA .

Further, our algorithm is a particular, known algorithm for computing eigenvectors: again, the *power iteration* method.

Guaranteed to converge.

Example authorities found

- (java) Authorities
 - .328 http://www.gamelan.com/ Gamelan
 - .251 http://java.sun.com/ JavaSoft Home Page
 - .190 http://www.digitalfocus.com/... The Java Developer: How Do I ...
 - .190 http://lightyear.ncsa.uiuc.edu/;srp/java/ javabooks.html
 - .183 http://sunsite.unc.edu/javafaq/javafaq.html comp.lang.java FAQ
- (censorship) Authorities
 - .378 http://www.eff.org/ EFFweb—The Electronic Frontier Foundation
 - .344 http://www.eff.org/blueribbon.html The Blue Ribbon Campaign for Online Free Speech
 - .238 http://www.cdt.org/ The Center for Democracy and Technology
 - .235 http://www.vtw.org/ Voters Telecommunications Watch
 - .218 http://www.aclu.org/ ACLU: American Civil Liberties Union

Issues

- Topic Drift
 - Off-topic pages can cause off-topic "authorities" to be returned
 - E.g., the neighborhood graph can be about a "super topic"
- Mutually Reinforcing Affiliates
 - Affiliated pages/sites can boost each others' scores
 - Linkage between affiliated pages is not a useful signal

Resources

- IIR Chap 21
- Kleinberg, Jon (1999). <u>Authoritative sources in a hyperlinked</u> <u>environment</u>. *Journal of the ACM*. 46 (5): 604–632.
- <u>http://www2004.org/proceedings/docs/1p309.pdf</u>
- http://www2004.org/proceedings/docs/1p595.pdf
- <u>http://www2003.org/cdrom/papers/refereed/p270/kamvar-270-xhtml/index.html</u>
- <u>http://www2003.org/cdrom/papers/refereed/p641/xhtml/p6</u> <u>41-mccurley.html</u>
- The WebGraph framework I: Compression techniques (Boldi et al. 2004)