
Analysing Object-Capability Patterns With Murφ

Deian Stefan

Abstract

Object Capability (OCap) patterns provide an alter-

native, more secure, approach to building systems

following the principle of least authority. Despite

the increasing popularity and application of OCap

patterns, little effort has been put into the analysis

of these patterns. We analyze several OCap patterns

using the Murφ verification tool. Our results con-

firm previous vulnerabilities found in several OCap

patterns when used in an operating systems context.

We verify an attack on the sealer/unsealer pattern us-

ing the Joe-E with Java threads. Finally, we propose

alternative patterns that our model checking did not

find to be vulnerable. We including code that further

demonstrates their usability.

1 Introduction

A wide number of system exploits and exposures

take advantage of the ample vulnerabilities1 , e.g.

buffer overruns, found in large programs. Even

security-concious programmers are susceptible to

writing exploitable code, as many abstractions we

are accustomed to are inherently flawed. Con-

sider, for example, the widely-used POSIX API. In

a POSIX environment, a simple logging application,

aLogger, running on behalf of user alice and

writing messages to /var/log/alice.log, is

actually given the full authority of user alice. This

ambient authority is assumed by many POSIX sys-

tem calls. For example, the system call

open(const char *pathname, int flags);

can be used by an application to open any file the in-

voking user can open. Considering the logging ex-

1See http://cve.mitre.org/cve/cve.html

ample, even if aLogger is honest in only open-

ing /var/log/alice.log, an exploit modify-

ing the path name can result in aLogger overwrit-

ing sensitive files, including, for example, alice’s

private cryptographic keys. This is possible since

aLogger has ambient authority and can overwrite

whatever file alice can. Worse yet, applications

are widely distributed in binary form and verifying

that an application is honest is usually not possible.

Therefore, users cannot safely execute such applica-

tions without extensive sanboxing or creating differ-

ent user account for each application. These meth-

ods are, however, cumbersome and usually cripple

the application—hence, users usually run applica-

tions with the hope that they are not malicious.

A more secure approach, following the

Principle of Least Authority (POLA) can

be used to run aLogger by first opening

/var/log/alice.log and providing aLogger

the file descriptor. Informally, POLA states that

an application should be given enough authority

to do its job, but nothing more. Although the

modified aLogger will, in actuality, be running

with ambient authority, if all open system calls

are disallowed, a POLA-like setting can be created

and aLogger will not have the authority write to

anything other than the file descriptor provided. Of

course, many applications using POSIX (and many

other APIs) rely on ambient authority, a side effect

of insecure APIs and patterns programmers have

gotten accustomed with.

Furthermore, our current insecure approaches to

building systems are not usually “patchable”, which

highlights the need for alternative methods of com-

posing secure systems (without trading off expres-

siveness and functionality). One such alternative

is the Object Capability (OCap) model [9, 8, 6].

1

http://cve.mitre.org/cve/cve.html

OCap model extends the object model by disallow-

ing things common in object model implementa-

tions, including mutable static state, forged pointers

and ability of an object to access another’s private

state [8]. The OCap model is increasingly becom-

ing more popular, yet little effort outside [11, 13, 12,

4, 17] has been put into formal analysing or mod-

eling of its patterns. In this work, we extend Mur-

ray’s work [11] by analysing several OCap patterns

using Murφ [1, 10], and present new patterns that

address the limitations of the analyzed-patterns in a

distributed, or operating systems, environment.

2 OCap model and patterns

In the OCap model there is no distinction between

a subject (e.g. Alice) and and an object (e.g. a file,

or class instance). Rather, everything is considered

an object and all communication is accomplished by

sending messages on references. Following [8], an

object can be a primitive, such as the literal 2, or an

instance2 which is a combination of code and state.

An object’s state may include references to primitive

objects or other instances. The latter, a reference to

an instance, is called a capability. As already men-

tioned, all communication in an OCap system is done

by sending messages on references, which implies

that, in order for an object to send a message to an-

other, it must have a capability to it. Of course, these

messages may include capabilities, and so the refer-

ence graph, which is also the access graph, changes

as capabilities are acquired and dropped. In an OCap

system an object may come to posses a capability

only through the following methods:

• Initial conditions.

• Parenthood. When object A creates another ob-

ject B, it is the only object in the system with

the capability to B.

• Endowment. If object A has a capability to ob-

ject C , then it can create another object B such

2 A process is considered instance of a program, similar to

an object being an instance of a class.

foo
()

/etc/passwd

Figure 1: Connectivity by introduction: A send B

message foo with capability to C .

foo
()

/etc/passwd

Figure 2: Selective revocation: A send B message

foo with capability to F , and, indirectly, revocable

access to C .

that B is already ‘endowed’ with a capability to

C .

• Introduction. If object A has capability to ob-

jects B and C , then A can give B (resp C) ca-

pability to C (resp B) by sending it a message

containing the capability.

A direct consequence of these rules is that “only con-

nectivity begets connectivity” and so a message from

one subgraphs cannot be sent to another if they are

disjoint. This is particularly important in building

secure systems because at each ‘snapshot’ of the dy-

namic graph, it is directly clear who has access to

what and the connectivity rules state how the graph

may change. Consider, for example, the graph where

A has capability to B and C . The latter, C , has a

read/write capability to file /etc/passwd. The

only way B can gain any access to /etc/passwd

is through A introducing C (or some forwarder) to

B, as shown in Figure 1.

2

foo
()

/etc/passwd

{read}

{read,write}

Figure 3: Attenuated forwarders: A send B message

foo with capability to F , and, indirectly, read-only

access to C .

An immediate concern with capabilities, however,

is revocation. Because a capability is simply a refer-

ence to an object, it is not clear how one can revoke

the capabilities it grants. Simply, a capability cannot

be revoked. However, using a revocation pattern an

object can revoke the access a granted capability has.

Though other patterns are conceivable, a common re-

vocation pattern is Redell’s caretaker pattern [14, 8].

Using the caretaker pattern A can give B revocable

access to C as follows. First, A creates three objects:

• A mutable boolean (enable) slot E.

• A gate G, with capability to E. Upon receiving

message toggle, G toggles E’s value.

• A forwarder F , with capability to E and C .

Upon receiving message m, F checks the value

of E and only if it is true, it proceeds to forward

m to C .

Now, instead of giving B capability to C , A gives

B capability to F , as shown in Figure 2. While E

remains true B can send any messages to C , as if F

is not in the reference path. However, A can revoke

B’s access to C at any time, simply by sending G the

message toggle.

A concern of equal interest to revocation is atten-

uation. Specifically, suppose A wants to give B a

capability to C , however, restricting B’s privilege to

a certain message, e.g., read. To do so, as in the

caretaker pattern, A creates a forwarder, F . In this

case, F only accepts the message read, as shown in

Figure 3. Of course, this read-only forwarder pattern

can be combined with the caretaker pattern to grant

a revocable, read-only capability.

Note that this pattern only restricts B’s privilege to

C through F . If C responds to B’s read message

with a capability to itself then B’s authority will en-

tail write access to /etc/passwd as well. Thus,

if C cannot be trusted to respect the read-only capa-

bility, A must use a membrane forwarder, instead of

a read-only forwarder. A membrane forwarder [8],

wraps every capability in either direction and thus if

C returns B a raw capability to itself, the membrane

will wrap it, effectively making it read-only. As in

the case of the read-only forwarder, the membrane

pattern can be combined with the caretaker pattern

to grant a revocable, transitive read-only capability.

The final pattern we consider, is that of right am-

plification using sealer/unsealer pairs [6, 16]. The

basic premise of sealer/unsealer pairs is similar to

that of public-/private-key pair: an object A may

use a sealer to “seal” another object $ which C

can unseal only if it has the corresponding unsealer.

Though some OCap systems, such as E, support seal-

er/unsealer pairs as a primitive, other implement it

using a pattern. Following [16], the sealer/unsealer

pattern consists of

• A mutable shared slot S.

• A sealer with capability to S, that, upon receiv-

ing the message seal with argument $, creates

and returns a box B (with endowed capability

to S). Box B, when invoked, writes $ into slot

S.

• An unsealer U with capability to S, that, upon

receiving the message unseal with argument

B′, clears S, and invokes B′. After invoking B′

it returns the slot contents, if any.

Note that for the unsealer to return $, it must invoke

box B′ such that B = B′. As an example use, con-

sider Figure 4. In this case object A can send C a

capability to $ through the curious object D.

3

foo
()

Figure 4: Sealer/unsealer pattern: A sends C a ca-

pability to $ through D. Using a sealer, A sends D

a capability to box B. Upon receipt of B, C can

use unsealer U and box B (which writes $ to S) to

retrieve $
.

3 Modeling OCap patterns in Murφ

Using the Murφ verification tool we model several

aspects of the OCap model, including the patterns

discussed in the previous section. We, however, note

that for each modeled pattern we initialize our sys-

tem with a small access graph consisting of several

interconnected objects. Since we do not model ob-

ject creation, the dynamics of the access graph only

changes based on the rule of introduction.

As in [11], we are interested in modeling OCap

patterns in the context of programming languages

(PL) and distributed/operating systems (D/OS). As

a number of capability systems in these domains al-

ready exist [2, 15, 3, 18, 5] , we believe that our

analysis is useful towards understanding the security

properties of such OCap patterns when used in com-

plex systems. More importantly, we believe a rec-

ommendation on how to securely implement these

patterns in both contexts is essential. As we show in

Section 4 and Murray previously showed in [11], a

direct implementation of several of the patterns will

violate the security properties they are designed to

uphold.

Each object in the system is modeled by a sin-

gle type Object, which includes the object’s state,

capability list (c-list), and behavior description (i.e.

whether it is a forwarder, a gate, a membrane, an un-

sealer, or ‘plain’). This closely corresonds to the def-

inition of an instance consisting of state (c-list) and

code (behavior). Furthermore, we note that a capa-

bility in an object’s c-list can be a raw capability or

a wrapped, i.e. attenuated, capability.

We model object communication using a simple

network whose buffer length is 1 in the case of PL,

and > 1 in the D/OS setting. Each inter-object-

communication message (IOCM) contains several

standard fields, e.g. source, destination, message,

message arguments, etc. Note that an IOCM is used

to send messages, specifically call, return,

grant, revoke and unseal, between objects.

Each IOCM additionally tracks the message path (i.e.

intermediate objects a message has passed through),

a time stamp of when the message was placed on the

network, and whether or not the message is wrapped.

The architecture we model is a typical call-return

blocking architecture and thus only objects in an idle

state may invoke a capability from their c-list, at

which point they will go in a blocking state, await-

ing a return message.

Given an overview of our object and communica-

tion model we now detail the specific patterns me

modeled, their security properties, and our approach

to verifying the invariance of these properties. We

use S(m)
m(a)
−−−→ D(m) to denote a message m with

argument a being sent from source S(m) to destina-

tion D(m). A
m(a)
−−−→ + indicates a series of message,

the last of which is m, i.e. transitive (but not reflex-

ive) relation.

• Membrane forwarder pattern: The property

we expect the membrane pattern to uphold is

transitive attenuation. Recall that each IOCM

tracks the message path, and whether a mes-

sage is raw or wrapped. If object Oj receives

a raw message from Oi over path π, we say the

paths from Ok to Oj , for k ∈ π are tainted.

Each object state contains a taint list T such that

T (Oj , Ok) is true if the path from Oj to Ok is

tainted. Let M(Oi) hold true if Oi is a mem-

brane object and false otherwise. We express

the pattern property as invariant:

∀Oi, Oj .M(Oi) ∧ ¬T (Oi, Oj)

4

• Revocable membrane forwarder pattern: Al-

though our implementation can model a simpler

non-membrane revocable forwarder pattern, the

membrane version ‘subsumes’ the former by

further incorporating the above invariant. Fol-

lowing Figure 2, we expect the forwarder F

to only forward messages when the enable flag

E is true. Our model implements a gate that,

in addition to toggling the enable flag E, also

records the time3 when the value is changed,

t(E). Moreover, recall that each message m

has a corresponding time stamp t(m) indicating

when it was sent. Though our model invariant is

expressed generally, the pattern property for the

single-revoker of Figure 2 is given as invariant:

6 ∃m.S(m) = F ∧ ¬E ∧ t(E) < t(m)

• Right amplification pattern: For the seal-

er/unsealer pair pattern we expect the unsealer

to not be able to gain access to the slot con-

tents, unless it has the (correct) box returned by

the corresponding sealer. Again, for clarity, we

express this property for the simpler setup, Fig-

ure 4, as invariant:

6 ∃B′.B′ 6= B ∧ C
unseal(B′)
−−−−−−−→ U

return($)
−−−−−−→ +C

4 Analysis and discussion

Given the description of our Murφ model and pat-

tern invariants, for each pattern we ran the verifier

only modifying the starting state to adjust for the PL

or D/OS setup and the initial access graph. We sum-

marize our results below.

• Membrane forwarder pattern: As expected,

we did not find any system property violations

in either the PL or D/OS setting(even varying

the number of concurrent messages in the latter

case). Although Murφ found no vulnerabilities

3We model time as a simple counter. Any instance a mes-

sage is place on the network or a revocation enable slot value is

changed, the global counter is incremented. Because our models

are very small, this does not result in overflows or other model-

ing anomalies.

Figure 5: Revocable membrane forwarder: F is a

membrane forwarder to C , G is a gate, and E is the

enable slot used by the two.

for this pattern, we stress that this pattern holds

(up to our model) for OCap systems; imple-

menting membrane-like patterns in other capa-

bility system does not guarantee transitive atten-

uation as suggested in [7]. In the Appendix A

we show a violation of a transitive read-only

property for the file system TahoeLAFS [19].

• Revocable membrane forwarder pattern: In

the PL setting, as in the previous case we found

no violations. However, as in [11], we founds

that the revocable membrane pattern in a D/OS

setting has a time-of-check-to-time-of-use vul-

nerability. Consider the access graph of Fig-

ure 5, where A granted B attenuated access

to C . Starting with E enabled, and using

isEnabled for the message used by the for-

warder to check status (which in our model is

implicit), Murφ found the following sequence

of message calls to violate the invariant:

1.B
call(·)
−−−−→ F

2.F
isEnabled()
−−−−−−−→ E

3.E
return(true)
−−−−−−−−→ F

4. A
toggle()
−−−−−→ G → E

5. E → G
return()
−−−−−→ A

6.F
call(·)
−−−−→ C

5

forward()

toggle

Figure 6: Proposed revocable forwarder: FG is a

forwarder gate to C , F is a wrapping forwarder, and

E is the enable slot used by the FG.

Note that F checked status in step 3, but did

not use the value returned by E until step 6,

at which point E was toggled. Addressing this

vulnerability, we propose a slightly modified re-

vocation pattern, shown in Figure 6. For sim-

plicity we present a non-membrane pattern, ex-

tending it to a membrane pattern can be done

as in [8]. This pattern consists of a wrapping

forwarder (note, in this case ‘wrap’ is not used

to interchangeably with membrane) F , which

takes any message m(a) and sends it as an ar-

gument to the message forward to the for-

warding gate FG. FG handles two messages,

toggle which is used to revoke access, and

forward which is handled by forwarding the

inner message to C . Figures 7 and 8, show the

code for the original and our proposed revoca-

tion patterns, respectively. Note that although

we provide E code, we do not claim that the

vulnerability is applicable to E. After running

Murφ for 13,720,000 states using the proposed

pattern, no invariant failed.

• Right amplification pattern: Similar to the

above and as in [11], in the PL setting, we found

no violations. However, we found that the seal-

er/unsealer pair pattern in a D/OS setting al-

lows for the unsealer to gain access to the slot

written by the box without having the correct

box. Consider the initial dynamic access graph

shown in Figure 9, where B′ is a box object that

C created by sealing an arbitrary object. Murφ

def makeCaretaker(target) {

var enabled := true

def caretaker {

match [verb, args] {

if (enabled) {

E.call(target, verb, args)

} else {

throw("diabled")

}

}

}

def gate {

to toggle() { enabled := !enabled }

}

return [caretaker, gate]

}

Figure 7: Original revocation pattern in E, based

on [8].

def forwardingGate(target) {

var enabled := true

def gate {

to toggle() { enabled := !enabled }

to forward(verb, args) {

if (enabled) {

E.call(target, verb, args)

} else {

throw("diabled")

}

}

}

return gate

}

def makeCaretaker(target) {

var gate := forwardingGate(target)

def caretaker {

match [verb, args] {

gate.forward(verb, args)

}

}

return [caretaker, gate]

}

Figure 8: Proposed revocation pattern in E.

6

Figure 9: Sealer/unsealer pattern initial dynamic

graph. A has a capability to box B which has capa-

bity to $ and slot S, that is common to the unsealer

U . C has capability to box B′.

found the following sequence of message calls,

equivalent to the attack in [11], to violate the

invariant:

1.C
unseal(B′)
−−−−−−−→ U

2.U
clear()
−−−−→ S

3.S
return()
−−−−−→ U

4.U
call()
−−−−→ B′

5.B′
return()
−−−−−→ U

6. A
call()
−−−−→ B

7. B
return()
−−−−−→ A

8.U
read()
−−−−→ S

9.S
return($)
−−−−−−→ U

10.U
return($)
−−−−−−→ C

We note that our model does not explicitly model

the interaction with the slot as we have shown;

specifically, clear and read are inlined and are

not messages being sent to an object. The basic ob-

servation of this vulnerability is that C can call the

unsealer with any box (e.g. B′), and after the un-

sealer has cleared the slot, if the correct box B is

invoked the slot is filled with $, which the unsealer

then proceeds to read and return back to the caller

(having assumed it was B′ that filled the slot).

public class SealerUnsealer {

private Object shared;

public Box Seal(Object o){

return new Box(o);

}

public Object Unseal(Box box) {

shared=null; //clear

box.share();

return shared;

}

public class Box {

private final Object box_shared;

public Box(Object o) {

box_shared = o;

}

public void share() {

shared = box_shared;

}

}

}

Figure 10: Joe-E sealer/unsealer pattern, based on

the E implementation of [16].

We implemented this attack in the JoE-E language

with two Java threads behaving as A and C . Fig-

ure 10 shows the JoE-E implemented pattern used in

our tests. As in the case of the revocable forwarder,

we propose an alternative pattern that we verified

with Murφ to satisfy the invariant (up to the model).

Figure 11 show the proposed pattern, in Joe-E, that

differs from the original pattern as follows. Rather

than implementing the box to simply write the capa-

bility to object $ in the slot, the box should also write

the capabilty to itself. The unsealer, invoked with B′

clears the slot, invokes B′, and then reads the con-

tents of the slot. If the box-capabilty is the same as

B′, the box it invoked, then the unsealer returns the

object placed in the slot, i.e. $. Otherwise it fails (in

our case, silently).

5 Conclusion

We modeled several Object Capability patterns us-

ing the Murφ verification tool. Our results confirm

7

public class SealerUnsealer {

private Object shared;

private Object modifier;

public Box Seal(Object o){

return new Box(o);

}

public Object Unseal(Box box) {

shared=null;

box.share();

if(!modifier.equals(box)) return null;

return shared;

}

public class Box {

private final Object box_shared;

public Box(Object o) {

box_shared = o;

}

public void share() {

shared = box_shared;

modifier = this;

}

}

}

Figure 11: Joe-E sealer/unsealer proposed pattern.

Murray’s previous work in finding a vulnerability in

the revocable forwarder pattern and sealer/unsealer

pattern when used in a distributed or operating sys-

tems context. We further implement the latter attack

in Joe-E with Java threads, and finally propose alter-

native patterns that address these vulnerabilities.

References

[1] D. Dill. The Murphi verification system. In

Proceedings of the 8th International Confer-

ence on Computer Aided Verification, pages

390–393. Springer-Verlag, 1996.

[2] N. Hardy. KeyKOS architecture. ACM SIGOPS

Operating Systems Review, 19(4):8–25, 1985.

[3] G. Klein, K. Elphinstone, G. Heiser, J. Andron-

ick, D. Cock, P. Derrin, D. Elkaduwe, K. Engel-

hardt, R. Kolanski, M. Norrish, et al. seL4: For-

mal verification of an OS kernel. In Proceed-

ings of the ACM SIGOPS 22nd symposium on

Operating systems principles, pages 207–220.

ACM, 2009.

[4] S. Maffeis, J. Mitchell, and A. Taly. Object ca-

pabilities and isolation of untrusted web appli-

cations. In 2010 IEEE Symposium on Security

and Privacy, pages 125–140. IEEE, 2010.

[5] A. Mettler, D. Wagner, and T. Close. Joe-E:

A security-oriented subset of Java. In 17th

Network & Distributed System Security Sympo-

sium, 2010.

[6] M. Miller, C. Morningstar, and B. Frantz.

Capability-based financial instruments. In

Financial Cryptography, pages 349–378.

Springer, 2001.

[7] M. Miller, K. Yee, J. Shapiro, et al. Capabil-

ity myths demolished. Technical report, Johns

Hopkins University, Tech. Rep, 2003.

[8] M. S. Miller. Robust Composition: Towards a

Unified Approach to Access Control and Con-

currency Control. PhD thesis, Johns Hopkins

8

University, Baltimore, Maryland, USA, May

2006.

[9] M. S. Miller, K.-P. Yee, and J. Shapiro. Ca-

pability myths demolished. Technical Report

SRL2003-02, Johns Hopkins University Sys-

tems Research Laboratory, 2003.

[10] J. Mitchell, M. Mitchell, and U. Stern. Auto-

mated analysis of cryptographic protocols us-

ing Mur/spl phi. sp, page 0141, 1997.

[11] T. Murray. Analysing object-capability secu-

rity. In Proceedings of the Joint Workshop on

Foundations of Computer Security, Automated

Reasoning for Security Protocol Analysis and

Issues in the Theory of Security (FCS-ARSPA-

WITS’08), 2008.

[12] T. Murray. Analysing the security properties of

object-capability patterns. PhD thesis, Univer-

sity of Oxford, 2010.

[13] T. Murray and G. Lowe. Analysing the infor-

mation flow properties of object-capability pat-

terns. Formal Aspects in Security and Trust,

pages 81–95, 2010.

[14] D. Redell and D. Redell. Naming and protec-

tion in extendable operating systems. 1974.

[15] J. S. Shapiro, J. M. Smith, and D. J. Farber.

EROS: a fast capability system. In Proceedings

of the 17th ACM Symposium on Operating Sys-

tems Principles, pages 170–185, Kiawa Island,

SC, December 1999. ACM.

[16] M. Siegler. A picturebook of se-

cure cooperation. Presentation, 2004.

erights.org/talks/efun/SecurityPictureBook.pdf.

[17] A. Spiessens. Patterns of safe collaboration.

PhD thesis, Université catholique de Louvain,

February 2007.

[18] M. Stiegler. Emily: A high performance lan-

guage for enabling secure cooperation. In Cre-

ating, Connecting and Collaborating through

Computing, 2007. C5’07. The Fifth Interna-

tional Conference on, pages 163–169. IEEE.

[19] Z. Wilcox-O’Hearn and B. Warner. Tahoe: the

least-authority filesystem. In Proceedings of

the 4th ACM international workshop on Stor-

age security and survivability, pages 21–26.

ACM, 2008.

A TahoeLAFS’s transitive read-

only

The Tahoe Least Authority File System (Tahoe-

LAFS) [19] is a file system that uses capabilities for

access control. Specifically, TahoeLAFS uses a URI

consisting of random string to uniquely identify a

file/directory; following the capability model, a ca-

pability does not separate authority and designation.

However, their their model is not an OCap mode, and

thus, they cannot guarantee

. . . the property of transitive read-only –

users who have read-write access to the di-

rectory can get a read-write-cap to a child,

but users who have read-only access to the

directory can get only a read-only-cap to

a child. It is our intuition that this prop-

erty would be a good primitive for users to

build on, and patterns like this are common

in the capabilities community . . . [19]

Consider the simple setup in which A has read-write

access to directory D, and B has only read aces.

Hence, B should only have transitive read-only ac-

cess. An attack is directly apparent given that Tahoe-

LAFS does not have a method of distinguishing be-

tween data and capabilities. Specifically, A can cre-

ate a file F in D consisting of the read-write capabil-

ity to D (or any subdirectory). B, using just the read-

only reads file F at which point it has acquired read-

write authority to D—highlighting a trivial violation,

which we confirmed to work with TahoeLAFS public

test grid. To be fair, the authors do claim “transitive”

and not “transitive and reflexive”, however A could

easily have written the read-write capability of any

sub directory or file.

9

erights.org/talks/efun/SecurityPictureBook.pdf

	Introduction
	OCap model and patterns
	Modeling OCap patterns in Mur
	Analysis and discussion
	Conclusion
	TahoeLAFS's transitive read-only

