Analysing Object-Capability
Patterns with Mur¢

Deian Stefan

Stanford University

OCap Model and Motivation

Object-Capability (OCap) model is a promising
approach to secure programming
- Access control is not a separate concern
Abstractions, or patterns, are used to compose
systems
- Systems built using the Principle of Least Authority (POLA)
- E.g., solitaire should not have the authority to write to any file
on your disk
Motivation
- OCap model and it’s patterns of cooperation are increasingly
being applied

- Formal analysis of OCap model is limited

2/14

What is the OCap model?

Object

Instance: Code & State (mutable references to other objects)

Data

Capability: reference to non-data, i.e., instance

Reference graph = access graph

Interaction only by sending messages

Graph dynamics and connectivity

Initial conditions
Parenthood: if A creates B — only connection to B is through A
Endowment: when A creates B it can give it capabilities it owns

Introduction: A has capability to B and C, but B and C are not
directly connected. A can give B capability to C

3/14

Patterns & their security properties

e Membrane & membrane forwarder pattern

- Object on transitive path acquires unwrapped capability

e Revocable forwarder

- Object still capable of sending message after Revoker revokes
access

e Revocable membrane forwarder

- Any object on the transitive path still able to send message after
revocation

e Sealer and unsealer

- Object gets direct access to “sealed” value

4/14

Modeling approach

Call-return framework
- Objects in idle state may receive messages
- Objects in blocking state await Return message

- Once an object sends a message, it blocks

Programming Languages: single-message simulates
sequential call-stack-like approach

Operating/Distributed Systems: multiple-message
simulates concurrency

5/14

Membrane Pattern

6/14

Membrane Pattern

6/14

Membrane Pattern

6/14

Results: Membrane Pattern

e PL/OS setting: no attacks

e Should this pattern be used whenever you want
transitive read-only?

- OCap system: yes
- Other capability system: maybe

e Attack on TahoeLAFS “transitive-read-only”

tahoe add-alias fun-dir URI:DIR2:1rxr3kzsb...rvxvclweezjuhzq

tahoe add-alias fun-dir-read-only URI:DIR2-R0O:4fudupw...mianvfwsrvxvclweezjuhzq
echo hello tahoe | tahoe put - fun-dir:alo #200 OK

tahoe get fun-dir-read-only:alo #hello tahoe

echo hello again | tahoe put - fun-dir-read-only:alo # 500 NotWriteableError
tahoe manifest fun-dir: | head -nl1 | tahoe put - fun-dir:silly

tahoe add-alias fun-dir-read-only-ha ‘tahoe get fun-dir-read-only:silly‘

echo hello again | tahoe put - fun-dir-read-only-ha:alo #200 0K

tahoe get fun-dir:alo #hello again ,
7/14

Results: Revocable Memb. Forwarder

“Vulnerable’ to scheduling /network:

8/14

Results: Revocable Memb. Forwarder

“Vulnerable’ to scheduling /network:

8/14

Results: Revocable Memb. Forwarder

“Vulnerable’ to scheduling /network:

8/14

Results: Revocable Memb. Forwarder

“Vulnerable’ to scheduling /network:

8/14

Results: Revocable Memb. Forwarder

“Vulnerable’ to scheduling /network:

8/14

Results: Revocable Memb. Forwarder

Time of check/time of use vulnerability:

9/14

Results: Revocable Memb. Forwarder

Time of check/time of use vulnerability:

9/14

Results: Revocable Memb. Forwarder

Time of check/time of use vulnerability:

9/14

Results: Revocable Memb. Forwarder

Time of check/time of use vulnerability:

9/14

Results: Revocable Memb. Forwarder

Fixing the time of check/time of use vulnerability:

e Forwarder forwards all messages but revoke
e Revoker forwards all messages, handles revoke

e Can wrap messages to allow for forwarding of revoke 10/14

Sealer/Unsealer pattern

Sealer/Unsealer pattern

Sealer/Unsealer pattern

Sealer/Unsealer pattern

Sealer/Unsealer pattern

Results: Sealer/Unsealer pattern

Attack:
[]

[]

Results: Sealer/Unsealer pattern

Attack:

Results: Sealer/Unsealer pattern

Attack:

Results: Sealer/Unsealer pattern

Attack:

12/14

Results: Sealer/Unsealer pattern

Attack:

Results: Sealer/Unsealer pattern

Fixing the vulnerability. Unsealer should:
e C(lear slot
e (all box (that also writes its capability in slot)
e Check the calling-box is slot-modifier box

e Return value only if above is true

13/14

Results: Joe-E Sealer/Unsealer pattern

public class SealerUnsealer {
private Object shared;

private Object modifier;

public SealerUnsealer() {}
public Box Seal(0Object o){ return new Box(o); }

public Object Unseal(Box box) {
shared=null; box.share();
//FIX: if ('modifier.equals(box)) return null;
return shared;
}
public class Box {
private final Object box_shared;
public Box(Object o) { box_shared = o; }
public void share() {

shared = box_shared;

modifier = this;
}
1

14/14

	OCap Model and Motivation
	What is the OCap model?
	Patterns & their security properties
	Modeling approach
	Membrane Pattern
	Membrane Pattern
	Membrane Pattern

	Results: Membrane Pattern
	Results: Revocable Memb. Forwarder
	Results: Revocable Memb. Forwarder
	Results: Revocable Memb. Forwarder
	Results: Revocable Memb. Forwarder
	Results: Revocable Memb. Forwarder

	Results: Revocable Memb. Forwarder
	Results: Revocable Memb. Forwarder
	Results: Revocable Memb. Forwarder
	Results: Revocable Memb. Forwarder

	Results: Revocable Memb. Forwarder
	Sealer/Unsealer pattern
	Sealer/Unsealer pattern
	Sealer/Unsealer pattern
	Sealer/Unsealer pattern
	Sealer/Unsealer pattern

	Results: Sealer/Unsealer pattern
	Results: Sealer/Unsealer pattern
	Results: Sealer/Unsealer pattern
	Results: Sealer/Unsealer pattern
	Results: Sealer/Unsealer pattern

	Results: Sealer/Unsealer pattern
	Results: Joe-E Sealer/Unsealer pattern

