
Security Analysis of NEP (Nping Echo Protocol)

David Fifield Ravi Kerur

March 11, 2011

1 Introduction

Nping (http://nmap.org/nping/) is a network diagnostic tool that can gener-
ate a variety of network packets and measure the responses that they provoke
from a remote host. The classic example of this type of measurement is sending
an ICMP Echo Request and receiving an ICMP Echo Reply or Destination Un-
reachable, but other possibilities include sending ARP requests to receive ARP
replies, or sending TCP SYNs to receive, perhaps, SYN/ACK or RST.

A common problem is that of interpretation when no response is received.
The probe might have been been stopped by an egress filter, dropped en route,
or firewalled on the remote host itself. The remote host might have received
the probe and sent a reply, but then the reply might have been lost in any
number of ways. It is also difficult to predict how a probe might be mangled by
intermediate boxes in transit: the packet the remote host sees may not be that
same one you sent.

To solve these problems, Nping has a mode of operation called “echo mode”
that establishes a side channel using a custom protocol called NEP (Nping Echo
Protocol). NEP runs by default over TCP port 9929. The packet-generating
client informs the server what kind of packets it’s going to send, the server sniffs
for anything sufficiently similar, then sends back a description of the matching
packets over the NEP channel. The visible effect on the client side is that in
addition to SENT and RECV output, there are CAPT lines showing the packets as
received by the server.

We present an analysis of NEP using the Murphi model checker[?]. We show
attacks against the protocol as it is deployed, as well as some against reduced
versions of the protocol that demonstrate the need for certain protocol features
or that might work if the protocol were incorrectly implemented. This paper
doesn’t include a full description of the protocol; for that, the reader is referred
to the protocol specification[?]. Once Nping is installed, echo mode can be
tested against a public demonstration server by running the command nping
--echo-client "public" echo.nmap.org.

1

2 Security Model

2.1 System Behavior

As an Nping echo server is essentially a network-accessible packet sniffer, NEP
takes steps to control access to it. The server is initialized with a passphrase
and derives a secret key from it. Each client must know the passphrase in order
to connect to the server. Once nonces are exchanged, all traffic is encrypted,
and each message is authenticated with a MAC. No public-key cryptography is
used; all encryption and authentication is done using symmetric keys derived
from the shared passphrase. The protocol can also be run in a --no-crypto
mode in which nothing is encrypted or authenticated.

2.2 Attacker Models

We define two different attacker models to reflect what we believe are two com-
mon uses of the protocol. They differ only in whether the attacker knows the
server’s passphrase. The attacker always has control of the network, but may
not break encryption or forge MACs.
Model 1 (trusted clients/private server). The server and all legitimate
clients know the secret passphrase and are honest. No other party (particularly
an intruder) knows the passphrase.
Model 2 (untrusted clients/public server). The passphrase is made public,
so anyone may use the server. Clients are not assumed to be honest. The public
server echo.nmap.org is an example of this model.

2.3 Security Properties

Model 1 has more stringent security properties than Model 2. The protocol seeks
to ensure confidentiality, integrity, and authentication. Clients are honest, so
none of them spoofs a server, for example, even though any one of them could.
We expect these security properties to hold:

1. An attacker cannot fool a client into thinking it is a legitimate server (i.e.,
one using the proper passphrase).

2. An attacker cannot make use of the server.

3. An attacker cannot modify traffic without detection.

4. An attacker cannot prevent legitimate clients (those with the passphrase)
from making use of the server.

5. Mutual termination: When a connection between a legitimate client and
server is ended, it is ended from the point of view of both endpoints. In
particular, an attacker can’t keep one end of a session alive.

6. Additionally, all Model 2 properties should hold.

2

In Model 2, the attacker has the passphrase, so ensuring confidentiality,
integrity, and authentication is impossible. But a malicious client (intruder)
should not deny service to other clients, nor be able to gain access to more
information than any honest client.

1. A (potentially malicious) client cannot interfere with other clients’ ses-
sions.

2. A (potentially malicious) client can only see captured replies correspond-
ing to its own probes, not those of other clients and especially not any
traffic not related to NEP.

3 Procedure

We built a model of NEP in Murphi 5.4.4. The model includes all NEP messages,
as well as pseudo-messages for TCP SYN and FIN. A global flag ENCRYPTION
defines which model we are using: true means Model 1 (attacker doesn’t know
the passphrase) and false means Model 2 (attacker knows the passphrase or
--no-crypto is in effect).

The model is parameterized for varying numbers of clients, servers, and
intruders, but we only tested with all of these set to 1. Even so, our model was
too complex to run to completion. Using Murphi’s heuristic hash compaction
we were able to reach

157000000 states explored in 1238.89s, with 539547301 rules fired
and 58344634 states in the queue.

Our source code and other information are available from http://www.
bamsoftware.com/stanford/cs259/. A quick start to run the model is:

$ make
$ mkdir trace
$./nping-echo -tv -ndl -m 4000 -d trace -p5

4 Results

4.1 PACKET SPEC Spamming

After the session handshake, the client sends an NEP PACKET SPEC message with
a description of the probe packets it intends to send. This description is a list
of tests, each of which is evaluated by the server. Each passing test awards
the client with a certain number of points. A packet is awarded to the client
that 1) has the highest score and 2) passes a per-protocol point threshold. For
example, when running a TCP ping against port 123, the client might send this
PACKET SPEC:

3

IPv4_ID==AC59
IPv4_TOS==00
TCP_SPORT==E996
TCP_DPORT==007B
TCP_SEQ==42C46E59
TCP_ACK==00000000
TCP_FLAGS==02
TCP_WIN==05C8
IPv4_PROTO==6

It is possible to craft a PACKET SPEC that gets a high score for any packet of a
particular protocol (say, TCP). By doing so, an attacker 1) prevents legitimate
clients from receiving their NEP ECHO packets, and 2) is able to spy on packet
headers on the server, even of traffic unrelated to NEP. This attack only works
in Model 2, because the attacker needs to be able to create messages.

The weakness is that the server doesn’t prohibit duplicate tests. The easiest
crafted PACKET SPEC consists of hundreds of copies of IPv4 PROTO==6; i.e., “pro-
tocol equals TCP.” Each of these matching tests awards the intruder 0.9 points,
easily enough to win against a legitimate client. A related idea (untested by
us) is to send multiple copies of single-byte PAYLOAD MAGIC tests, one for each
possible byte value.

The score can be made high enough not only to match any client’s NEP
traffic, but any traffic on the server. In our tests, we were able to see SSH
sessions in the output of our malicious client. An attacker doing this sees only
packet headers, though, not complete payloads.

Our recommendation, which was adopted by the Nping developers, is to
prohibit multiple tests with the same left-hand side.

Even with this fix, a less powerful attack exists. If two clients connect with
the same PACKET SPEC, they will have the same score for every packet. The
server resolves ties by awarding the packet to the client that connected last.
If an attacker can guess a client’s PACKET SPEC and connect sufficiently soon
after the client connects, it can get both its own and the other client’s NEP ECHO
replies. This can be verified by running

nping --echo-client "passphrase" server --id 0x1234

on two different computers; the second client to connect gets all the replies. Our
recommendation against this lesser attack is to reverse the order of tiebreaking.

After we reported the issue to the Nping developers, the issue was fixed on
March 3, 2011.

4.2 Connection Truncation/Keepalive

NEP doesn’t have any message to signal the end of a conversation; instead it
relies on the end of the TCP connection. This allows an attacker to truncate
the data stream in either direction without detection, without knowledge of the

4

passphrase. We assume that the attacker is able to inject packets into a TCP
connection, perhaps by acting as a TCP proxy.

For example, the attacker could send a TCP FIN to the server after the server
sends NEP READY. The server would record that the client disconnected, then
the client would send its probes to an unresponsive server and later disconnect,
unaware that anything was wrong.

The above, combined with the fact that a client sends no messages after
NEP PACKET SPEC, allows an attacker to disconnect a client from the server while
keeping the connection to the server alive. The client will record that it was
disconnected, while the attacker can make use of the existing connection. The
attacker can construct its own probes to send the server and listen for NEP ECHO
replies. Even though the replies are encrypted, the server’s response can be
guessed based on whether or not a packet is sent.

Our recommendation is to add a new message that is sent by both ends at the
end of a session. (In discussing this with the Nping developers, we learned that
an NEP BYE message had been considered during development of the protocol.)
With such a message, though a connection be hijacked, the attacker will not be
able to cleanly end it because he cannot forge the MAC. There is still a danger
of an attacker keeping a connection open indefinitely; a possible mitigation is to
send NEP BYE after a delay, demanding an authenticated message in response.

We added NEP BYE to our Murphi model and did not find any violations after
over 100 million states. (As mentioned above, our complete model never ran to
completion.)

4.3 Predictable IVs

The protocol uses the CBC mode of operation less securely than it might. The
first IV is random, but later IVs are the final ciphertext block of the previous
message. Knowing what the IV for the next message will be enables this attack:
Suppose c was the most recently seen ciphertext block. If the attacker has full
control over the plaintext to be encrypted, he can send c as the next plaintext
block to be encrypted. c will be XORed with itself, and the next ciphertext block
produced will be AES applied to the all-zeroes block. In this way, the attacker
can build up a code book of what are effectively ECB-mode encryptions. If a
later ciphertext is in the code book, knowing the IV used allows the attacker to
recover the plaintext.

This attack is not easy to apply to NEP. For one thing, the attacker does
not have control over the plaintext to be encrypted: messages must match the
packet formats, and messages are generated directly by the client and server, not
the attacker. The attacker can slightly influence some messages, for example by
sending probes to affect the contents of NEP ECHO replies. (A malicious client or
server would have fuller control over plaintext, but then such a malicious agent
already knows the key.)

Our recommendation is to permute the last-seen ciphertext block with a
secure pseudorandom permutation (such as an AES encryption using a different
key) before using it as the IV for the next message. This would not require

5

new randomness or additional message bytes. We regard this, however, as not
urgent, and something to be fixed perhaps in a future version of the protocol.

5 Version Downgrade: The Need for Nonces

In our analysis we built up our model of NEP piece by piece, and discovered
some attacks against reduced versions of the protocol that demonstrate why
certain protocol features are necessary. One of these is a man-in-the-middle
version downgrade that is possible if the protocol lacks nonces. It could also
affect the protocol as specified if implemented incorrectly, for example if a nonce
is reused. Below, we imagine a version 0 of NEP, even though version 1 is the
only one actually defined.

In this attack there are two versions of servers: version 0 and version 1.
Both servers must have set up the same passphrase for encryption and MAC
key generation. It is highly likely that two servers in an organization have
the same passphrase. When a legitimate version-0 client initiates a handshake
with the version-0 server, an attacker can record those handshake messages
to replay later. The attacker then initiates a handshake with the version-1
server by replaying recorded messages. Note that even though messages are
encrypted and MACed, the version-1 server will accept these messages since the
passphrase is the same and keys generated for encryption and MAC are the same
as for the version-0 server. Hence an active attacker, just by replaying recorded
messages, can convince a later-version server to communicate using an earlier,
presumably less secure, version and exploit the vulnerabilities. A similar attack
can be carried out when a legitimate version-1 client initiates a handshake with
a version-1 server. In this case the attacker can replay a recorded version-0
message to the client and convince the client to communicate using version 0.

NEP prevents this type of man-in-the-middle replay attack by including
nonces in the initial handshake process such that a legitimate client or server
can terminate the connection when illegitimate recorded messages are replayed.

6 Conclusion

In general we felt that NEP holds most security properties we defined and Mur-
phi is a very useful tool in analyzing those properties. Once we defined the
threat models and security properties of our system, Murphi as a security anal-
ysis tool was helpful in analyzing some of the basic properties of our model. In
addition, vulnerabilities that we found analytically by examination of the NEP
flow diagram, such as connection termination/keepalive and various obvious
vulnerabilities that appear when encryption is turned off, were later validated
by Murphi. Furthermore, failure traces by Murphi for our invariants helped
us comprehend the usefulness of the protocol parameters and the attacks that
could be carried out without their presence that we didn’t anticipate in our
initial analysis.

6

7 Acknowledgments

We are grateful to Professor John Mitchell and Jason Bau of Stanford University,
in whose CS 259 class this work was done. We also thank Luis MartinGarcia
(author of Nping) and Brandon Enright, who discussed our findings with us and
helped develop solutions.

References

[1] Luis MartinGarcia. “Nping Echo Protocol Specification.” August 2010.
http://nmap.org/svn/nmap/nping/docs/EchoProtoRFC.txt.

[2] http://www.cs.utah.edu/formal_verification/Murphi/.

7

