
1

Murphi Analysis of of OAuth 2.0 Implicit Grant
Flow

Roy Frostig Quinn Slack

{froystig,sqs}@cs.stanford.edu

Abstract—We used Murphi to analyze the security
of OAuth 2.0 implicit grant flow, as specified in
draft-ietf-oauth-v2-13.[1] Our analysis uncovered an attack
by which a Web attacker can cause a user’s account on an
OAuth client to be associated with the attacker’s account
on an OAuth authentication server. We propose a modi-
fication to the OAuth 2.0 protocol to prevent this attack.

I. Introduction

The OAuth 2.0 draft specification is widely used today
for managing privileges among Web services. We hypothe-
sized that because OAuth 2.0 implicit grant flow (described
in Section A) is less widely used than the normal flow, it
might be vulnerable to attacks. To test our hypothesis,
we modeled it using the Murphi model checker.[2] We first
present a simplified model of the implicit grant flow in En-
glish that suffices for the purpose of our security analysis.
Next, we describe the two different Murphi models that
we constructed. Finally, we present the attack that our
Murphi analysis uncovered and suggest a modification to
the OAuth 2.0 implicit grant flow.

II. OAuth overview

OAuth[1] is a Web authentication protocol that lets
users grant applications temporary and limited access to
their accounts on other sites, without revealing their login
credentials. For example, a Web application that wanted
to implement a “refer-a-friend” feature could use OAuth
to obtain an access token for a user’s Facebook accounts
and read the contents of his address book. The user would
separately authenticate to Facebook and approve the Web
application’s request for access.

In OAuth nomenclature, the Web application is the
client, and Facebook is the authentication server and re-
source server.

A. Implicit grant flow

When the client application resides on the user’s own
computer, as opposed to being executed on a remote server,
then the OAuth implicit grant flow is used. It differs
from the normal flow in that there is no client secret or
client authentication, because any user could examine the
client’s memory to uncover a client secret or inject un-
trusted code. Applications that must use implicit grant
flow include desktop applications (such as iPhoto) and lo-
cal, in-browser Javascript applications. Our focus in this
paper is on the implicit grant flow.

An implicit grant flow consists of the following steps.
See Figures 1–5 for an example.[3] The example client ap-

plication fb.html is bundled with our submitted project
code.
1. Client authorization request. The client initiates the

flow by redirecting the user to an authentication server.
2. User authentication. The user, upon being redirected

to his authentication server, authenticates to it.
3. Access token response. The authentication server redi-

rects the user back to the client, with the access token
and other state being passed in the URL fragment.

4. Client authorization accept. When the user is redirected
back to the client, the client examines the URL frag-
ment to obtain the access token.

5. The client may now make requests to the resource server
using the access token.

https://client/

Fig. 1. Step 1 in the implicit grant flow: client authorization request.

Fig. 2. Step 2 in the implicit grant flow: user authentication.

https://client/#access_token=192653537434685%7C2

F3OYX8LeqPQ3DfXTk+rgQEQ__.3600.1299585600-220920

%7CLpbiRhDFhWa1ycQ2dxFjmztKRAw&expires_in=6779

Fig. 3. Step 3 in the implicit grant flow: access token response.

III. Murphi models

A. Threat model 1: resource thief

In our first attempt to model potential threats in the
system, we tried to exhibit a sequence of actions by sev-

2

<script>

accessToken = window.location.hash.substring(1);

</script>

Fig. 4. Step 4 in the implicit grant flow: client accepts access token.

<script>

graphUrl = "https://graph.facebook.com/me?" +

accessToken + "&callback=displayUser"

// use JSON-P to call the graph

var script = document.createElement("script");

script.src = graphUrl;

document.body.appendChild(script);

</script>

Fig. 5. Step 5 in the implicit grant flow: client accepts access token.

eral agents participating (perhaps simultaneously) in sev-
eral ongoing flows that results in some agent obtaining
an access token which grants her access to some user’s
resources despite the user not having granted such priv-
ileges to the agent. In any given flow, an agent may
take the role of user, client, or server, but an agent’s
“knowledge” is shared between the flows in which it par-
ticipates. The full model definition can be seen in the
provided file oauth-implicit-grant-resource-steal.m.
We highlight the following key aspects therein.

State is maintained in a large array of flows and a set of
AccessTokens known to the attacker:

var

flows: array[UserAgentId] of

array[ClientId] of

array[AuthServerId] of FlowStates;

attackerKnownTokens: multiset[MaxKnowledge] of

AccessToken;

FlowStates is an enum type with domain corresponding
exactly to the flow states defined in [1]. We have one at-
tacker, and IDs for clients and authentication servers are
modeled as either legitimate or attacker-controlled by their
type:

type

ClientId: union { GoodClientId,

AttackerId };

AuthServerId: union { GoodAuthServerId,

AttackerId };

The model’s rules simulate the simple transitions be-
tween states and. If any access tokens are obtained
by any agent in any one of these transitions, and
that agent is an attacker (in the Murphi sense of
ismember(·, AttackerId)), then the token is added to
the attackerKnownTokens multiset. Our invariants en-
force that the attacker learns no tokens but their own.

With several iterations on this model and trials with
different parameters, we were unable to find an offending

trace. We report this as good news for potential users and
implementors of the OAuth 2.0 Implicit Grant protocol.
We also note that the number of parameters we were able
to run this with was, of course, rather limited due to the
exponential growth in state space (note the definition of
the flows array) resulting from increasing the number of
any of the agent types. A reasonable opportunity for future
work would be to optimize this model so that it may be
verified with at least two of every kind of agent.

B. Threat model 2: session-rider

As our grandparents used to tell us when we were young,
“kids, if you can’t find issues with your modeled attacker,
try another threat model!” We decided to put these words
to practice, and considered a different avenue of attacks.

Previously, we were considering an attacker that might
violate the protocol in the obvious way — obtaining a token
they were not authorized to hold, and using it for privileged
access to user resources. In the spirit of [4], we attempted
to model an attacker with different intentions, to see if
we can find a situation where an attacker could cause a
user to use a token of the attacker’s choosing. This is
an attack in the conventional session-riding CSRF sense.
As evidenced in later sections, several clients or resource
servers use the token issued to a client (by the resource
server’s corresponding authentication server) for privileged
access to a user’s data also as a form of identifying that
user.

As a coarse example, your bank’s web application
(client) may expose a revolutionarily friendlier way for cash
withdrawal, and that you have a profile on the hypotheti-
cal social networking website Bookface. It is Monday, and
you suspect you’ll need some stacks of paper cash by the
end of the week. You visit your bank’s website, where the
bank application asks to connect to your Bookface account
in order to obtain your name and address and send you the
cash in an envelope by Friday. If an attacker can force you
to visit your bank’s website with their own access token,
then Bookface will report to the bank application your
name and address as those of the attacker (as those are
the resources associated with the access token presented).
The bank then conveniently mails cash from your account
directly to the attacker’s home by Friday.

Our Murphi model for this setting is relatively sim-
ple, and nearly directly illuminates the attack1. The
full model definition can be seen in the provided file
oauth-implicit-grant-session-ride.m, but we high-
light the following key aspects.

The AccessToken type represents a token, has as its only
three fields server, client, and user, indicating that the
token was generated for server to grant client access to
user’s resources. The User type defines a record for track-
ing a user’s perceived state during a single protocol flow

1 This seemed to be examplary of a lesson learned of protocol mod-
eling that Professor Mitchell described earlier in the quarter: We were
designing a model with general motivation and, as we formalized our
thoughts in writing Murphi rules to define the model, eventually
found ourselves describing the attack almost directly in the form of
Murphi rules.

: MURPHI ANALYSIS OF OF OAUTH 2.0 IMPLICIT GRANT FLOW 3

and an array accessGrants tracking pairs 〈 client appli-
cation, resource server 〉 such that the user believes she
has granted the client application privileges to resources
on the resource server. The Client type defines the client
application’s perceived state within a flow, and a multiset
knownTokens of access tokens the application has accepted
in any of the flows in which it participates.

The attacker is modeled in two state transition rules. In
class we discussed a web attacker as an entity that may
force the user to visit a website of their choice. In our
Murphi model, this corresponds to one state transition
rule (“Attacker presents user with bad auth chal”)
where the attacker may present the user with the au-
thentication dialog of any authentication server2, and an-
other state transition rule (“Attacker makes user pass

bad auth token”) where the attacker may redirect the
user to a client application with an AccessToken corre-
sponding to any triple 〈server, client, user〉 for which
the attacker could reasonably present an access token. As
we show later, the offending token is one where the user

is the attacker herself.
The remaining rules in this model are straightforward:

one simulates the client starting the protocol, another sim-
ulates the user going to an authentication server to grant
access to resources and be redirected back to the client,
and a third simulates the client accepting and using the
token retrieved in the URL fragment.

The single invariant in this Murphi model enforces that,
at any point, a client accepts an AccessToken from a user
only if

• that same user is the one user field of the
AccessToken, and

• the client is the client field of the AccessToken.
This invariant corresponds directly to our previous stated
intuition that clients may present to a resource server an
access token that does not correspond to the user whose
resources the client wishes to retrieve.3

IV. False authentication binding attack

Our Murphi model found a false authentication bind-
ing attack, which is a kind of session-riding and CSRF
(cross-site request forgery) attack. Our attack allows a
Web attacker to cause a client to associate a user’s client
account with an attacker’s authentication server account.
All that is required is for a Web attacker to direct a user
to open a certain URL. This is similar to the WebAuth
attack presented in the CS259 lecture on January 19.[4]

The following are the steps to execute the attack. C
is a OAuth implicit grant flow client, and A is an OAuth
authentication server. Alice is a user of C, and Eve is a
Web attacker with an account on A. See Figure 6 for a
Murphi trace of the attack using the model in Section III.

2 This simulates an attacker displaying some server’s authentication
dialog in, say, an iframe or an overlaid image served on the attacker’s
own page.

3 We also use this invariant to assert that the server field of the
AccessToken is the server from which the client wishes to request re-
sources, but this is merely as a debugging checkpoint for the authors’
sake — it does not represent a threat.

1. Eve initiates an OAuth implicit grant flow on C to au-
thenticate to A. She obtains a redirect URL of the form
https://client/#access token=TOKEN, where TOKEN

is Eve’s access token.
2. Eve causes Alice to open that same URL.
3. When Alice opens the URL with Eve’s access token, C

associates Alice’s account on C with Eve’s account on
A.

For example, in Step 1 above, the attacker would
obtain a URL of the form seen in Figure 3:
https://client/#access token=1926535.... The Web
attacker could mount the attack by hosting a popular Web
site and causing users to click on a link with that URL.

A. Attack analysis

The attack exploits the separation of the user authenti-
cation step and the token passage step. We propose a fix
in Section B that binds the two steps.

Fundamentally, access tokens represent permissions, not
identity. Our attack applies whenever a client or server
takes actions dependent on the set of access tokens asso-
ciated with a user. This is not just a theoretical concern.
Facebook’s me API call returns the profile of the user who
created the access token, which means an attacker who in-
jected his access token could cause a client application to
perform actions on the attacker’s Facebook identity, not
on the legitimate user’s.

One incorrect solution would be to have the user and
client fully specify the actions they wish to take inde-
pendently of the knowledge they would gain from access
tokens. Then the client and authentication server would
carefully design their APIs so that they never took ac-
tions based implicitly or explicitly on the identity of the
access token grantee. For example, to retrieve a user’s
Facebook profile, a client would first prompt the user for
his Facebook user ID, then initiate an implicit grant flow
with Facebook, and then request the user’s Facebook pro-
file by specifying the previously entered user ID (not with
the me API call). Asking the user to enter his Facebook
user ID defeats the purpose of using OAuth; clients use
OAuth because they don’t want to force the user to man-
ually enter information stored on other sites.

Another obstacle to designing around this attack at the
application level is that sites may wish to track statistics
about API usage, for monitoring purposes or to levy usage
fees on users. In this use case, API calls must be tracked
by the user whose access token initiated them, so they
must take actions based on the identity encoded in the
access token. While it is possible to design an application
so that an attacker could only cause harm to himself (e.g.,
by injecting his access token, he’d be charged for API calls
made by the user), this is a highly subjective classification,
and so in general it is unacceptable.

B. Preventing the attack

We can prevent the attack by binding the user authen-
tication step with the token passage step. The OAuth 2.0

4

Rule Client starts protocol, s:ServerId_1,

c:ClientId_1,

u:UserId_1 fired.

users[UserId_1].state:U_AUTHCHAL

users[UserId_1].redirectToClientAfterAuth

:ClientId_1

users[UserId_1].authToServer:ServerId_1

clients[ClientId_1].state:C_WAIT_TOKEN

clients[ClientId_1].user:UserId_1

Rule Attacker makes user pass bad auth token,

a:AttackerId_1, s:ServerId_1, u:UserId_1,

c:ClientId_1 fired.

users[UserId_1].state:U_PASSTOKEN

users[UserId_1].passToken.server:ServerId_1

users[UserId_1].passToken.client:ClientId_1

users[UserId_1].passToken.user:AttackerId_1

Fig. 6. Murphi trace for the false authentication binding attack.

implicit grant flow specification provides a way to do this
using the state parameter.

1. Client stores a random nonce R on the user agent (in
session storage or cookies).

2. Client uses R as state param in redirect to authenti-
cation server.

3. Authentication server passes the same state parameter
R in redirect URL back to client.

4. Client only accepts access tokens from the authentica-
tion server accompanied by state param that matches
the stored random nonce R.

The random nonce must be long enough so that it can-
not be guessed by brute force. Any Web attacker can use
history hijacking techniques to check whether a user has
initiated an implicit grant flow for all possible values of the
state parameter.

Unlike WebAuth, OAuth makes it possible for clients to
prevent false authentication binding attacks, with OAuth’s
optional state parameter. However, OAuth does not man-
date that the state parameter be used to prevent these
attacks.

We recommend that the OAuth 2.0 implicit grant flow[1]
introduce and mandate the use of a new binding param-
eter to bind the user authentication and token passage
steps. This parameter would consist of a random, client-
generated nonce and would function in the same way as
the state parameter does above. We prefer using a new
parameter over monopolizing the use of the state param-
eter because there may be other legitimate uses for the
state parameter. Forcing developers to simultaneously
encode into the state parameter both a random nonce
and application-specific state data would likely result in
many insecure implementations.

References

[1] E. Hammer-Lahav, D. Recordon, and D. Hardt, “The OAuth 2.0
Authorization Protocol,” Internet-Draft draft-ietf-oauth-v2-13,
Internet Engineering Task Force, Feb. 2011, Work in progress.

[2] David L. Dill, “The murphi verification system,” in Proceedings
of the 8th International Conference on Computer Aided Verifica-
tion, London, UK, 1996, CAV ’96, pp. 390–393, Springer-Verlag.

[3] “Authentication - facebook developers,” Mar. 2011.
[4] John Mitchell, “CS259 Lecture Slides on WebAuth CSRF at-

tack,” University Lecture, Jan. 2011.

