
Security Survey of Bitcoin

Ruven Chu and Andrew He

March 11, 2011

Bitcoin background

• Distributed digital currency, no centralized trust

• Coins are exchanged via broadcast messages (transactions)

• Transactions are gathered into blocks

• Nodes “approve” blocks by solving CPU-intensive problems

• Approved blocks are added to the block chain, which
represents a complete timeline of transactions

A simplified example

B

A

C
Block Chain

A simplified example

B

A

C

I’ll send 1 to B

Block Chain

A simplified example

B

A

C

Tx := PrevTx || “1”, PK(B), Sig
Sig := { H(PrevTx, PK(B)) }SK(A)

Block Chain

Tx

A simplified example

B

A

C
Block Chain

Tx
Tx

A simplified example

B

A

C
Block Chain Tx

Tx

A simplified example

B

A

C

I’ll make a
new block!

Block Chain Tx

Tx

A simplified example

B

A

C

I’ll make a
new block!

Block Chain Tx

A simplified example

B

A

C
Block Chain Tx

A simplified example

B

A

C
Block Chain

A simplified example

B

A

C
Block Chain

Solving…

Solving…

Solving…

A simplified example

B

A

C
Block Chain

Solving…

Solving…

A simplified example

B

A

C
Block Chain

Solving…

Solving…

A simplified example

B

A

C
Block Chain

Drat!

Darn.
A’s transfer to B is
now approved.

Branching

• Nodes can actually have different chains from one another

• The block chain can branch to reflect these differences

B

A

C

Block Chain

Branching

• Once one branch becomes longer, all nodes switch over

B

A

C

Block Chain

The double-spending problem

• Node A might try to send the same coin to B and C

• Node A thus creates two conflicting transactions

The double-spending problem

• Node A might try to send the same coin to B and C

• Node A thus creates two conflicting transactions

 Safeguard: a node that receives conflicting transactions will
only accept the one transaction it sees first

Security properties / threat model

• No branch of the block chain should include double-spends

• No node’s “idea” of the block chain should include double-
spends

• Model a network attacker:
– This is realistic, since communications are unencrypted

– Attacker is an “imperfect” broadcaster

• Include idea of CPU power in the model

Murphi model
type

 TransId: 0..TransCount;

 ValidTransId: 1..TransCount-1;

 …

 CurrentTrans: 1..TransCount;

 WorkAmount: 0..MaxWork;

 AgentId: union {ParticipatorId, IntruderId}

 BlockChain: array[ValidTransId] of Message;

 TransChain: multiset[TransCount] of ValidTransId;

 Agent : record

 chain: BlockChain;

 validchain: TransChain;

 …

 workleft: WorkAmount;

 end;

var

 age: array[AgentId] of Agent;

 cur: CurrentTrans;

 tra: BlockChain;

Invariant

invariant "nobody legally double pays"

 forall i: ParticipatorId do

 forall j: ParticipatorId do

 i != j

 ->

 checknodoublepay(age[i],age[j])

 end

 end;

function checknodoublepay(one: Agent; two: Agent) : boolean;

var combined: TransChain;

var total: BlockChain;

var counts: CoinCounts;

begin

 undefine combined;

 undefine total;

 for i: ValidTransId do

 if MultisetCount(j:one.validchain,one.validchain[j] = i) > 0

| MultisetCount(j:two.validchain,two.validchain[j] = i) > 0 then

 MultisetAdd(i, combined);

 if !isundefined(one.chain[i].id) then

 total[i] := one.chain[i];

 end;

 if !isundefined(two.chain[i].id) then

 total[i] := two.chain[i];

 end;

 end;

 end;

 counts := getcounts(total, combined);

 for i:AgentId do

 if counts[i] < 0 then

 return false;

 end;

 end;

 return true;

end;

Double-spending attacks

1) Network segmentation

2) Majority control of the network (w.r.t. CPU power)

 These are known attacks; our model didn’t reveal any
previously-unknown attacks.

Segmentation

• Attacker divides the network into two subgraphs that can’t
communicate with each other

• Spend a coin twice: once in each subgraph

Segmentation example

A

B
C

D

X

X

X

I’ll send to B
I’ll send to C

Segmentation example

A

B
C

D

X

X

X

I’ll send to B
I’ll send to C

Tx B
Tx C

Segmentation example

A

B
C

D

X

X

X

Tx B

Tx C

Tx B Tx B

Segmentation example

A

B
C

D

X

X

X

Tx B

Tx C

Tx B Tx B

Segmentation example

A

B
C

D

X

X

X

Tx C

Tx B

Tx B Tx B

Segmentation example

A

B
C

D

X

X

X

Tx C Tx B

• After blocks propagate subgraphs, attacker has double-spent

 Actually feasible? Difficult, but not impossible to surround
one or more nodes with attack nodes

Majority power attack

• Attacker can grow whichever branch of the chain he wants,
with whatever transactions he wants

• Trivially breaks Bitcoin for everyone

 Anyone with that much CPU is disincentivized to do this, since
they could just gain from acting legitimately

Other concerns

• Denial-of-service

• Anonymity

Denial-of-service

• Follows from segmentation attack

• Trivial for a network attacker

• Bootstrapping process uses no encryption
– Nodes connect to IRC channel to discover other nodes

• Attacker can connect you to dummy nodes that refuse to
broadcast your messages

Denial-of-service

• Follows from segmentation attack

• Trivial for a network attacker

• Bootstrapping process uses no encryption
– Nodes connect to IRC channel to discover other nodes

• Attacker can connect you to dummy nodes that refuse to
broadcast your messages

 Not considered a huge problem, just go somewhere else

 Attacker could cut off all of your other traffic too

Anonymity

• Transactions are anonymous only as long as your public key is
never linked to any identifying information

• Impossible if you buy tangible goods shipped to your home

 Fix (somewhat in progress):
• Never send coins using the same public key twice

• Every time you receive coins, create a new identity (public key) and
send your coins to that new identity through a “mixer”

• The “mixer” accepts lots of coins from various people and randomly
matches source(s) to destination(s)

Bitcoin adoption

Bitcoin adoption

