
Security Threat Analysis for
Hughes' Prefetching Proxy

Brian Jones
Stanford University

March 14, 2011

Abstract

This project, proposed by HughesNet, examines
security vulnerabilities associated with using a
prefetching proxy. Hughes is interested in using a
prefetching proxy to reduce noticeable latency on
the user's end while connected to the internet via
satellite. This paper looks at three possible threats
to this system, security properties associated with
these threats, and possible solutions.

Motivation

In satellite communications, there is no avoiding
the major issue of high latency. Given that the
speed of light isn't changing anytime in the
foreseeable future, satellite internet providers must
look to different mechanisms for reducing latency.
HughesNet's approach to reduce the noticeable
latency on the user's end is to implement a
prefetching proxy which prefetches embedded
content in user requested webpages. The theory
behind this approach is the user will get quicker
feedback from a website, even though the user
may still have to wait for the data or media they
were asking for.

System Model

As shown in figure 1, the prefetching proxy,
located on the Hughes/Internet side of the satellite
connection, passes back the plain HTML
immediately to the user after receiving a response
from a website. Instead of the user continuously
requesting the extra embedded objects in the
website, the prefetching proxy makes the requests
and forwards the objects back to the user once it
receives them.

1

The structure of the prefetching proxy requires
some discussion. The prefetching proxy consists
of a set of “headless browsers.” Each instance of a
user's browser is assigned a headless browser in
the prefetching proxy. These act on the users's
browser's behalf in communication with user
requested websites. The creation and deletion of
these headless browsers is linked directly with the
browsers loaded and unloaded on the user's
computer.

The original model from Hughes kept the

1 Pictures courtesy of HughesNet

Figure 1: Prefetching Proxy System Model

Figure 2: Prefetching Proxy System Model

headless browsers strictly disparate entities. While
this constraint kept the model highly secure, it also
limited performance. With the structure of the
prefetching proxy proposed, performance could be
drastically improved by allowing headless
browsers to share data requested by different users.
Much more care has to be taken in implementing
this type of system, but the possible improved
performance warrants the efforts. For this reason,
I have used a shared cache in the prefetching
proxy in my model and I analyze some of the
security vulnerabilities related to using a shared
cache.

Threat Model

In this paper I examine three threat models. Two
of these are related to the use of a shared cache
and the third is related to an SSL_Strip attack,
independent of the shared cache.

The first threat I look at is an adversary
having access to the prefetching proxy and the
shared cache with normal user permissions. Such
an adversary can eavesdrop on traffic moving
through the prefetching proxy by requesting only
data stored in the shared cache. This type of threat
threatens a user's confidentiality by possibly
sharing sensitive user information with an
adversary.

The second threat I look at is an attacker's
website being visited by a user and the website
planting malicious code onto the prefetching
proxy. As a result, the malicious code is stored in
the shared cache and can then be planted on all the
other users communicating with the prefetching
proxy. This type of threat threatens the integrity of
the system due to the possible vastness of the
infection. With such a potentially detrimental
infection, the attacker could disrupt the normal
operation of the system.

The third threat I look at is an HTTPS
SSL_Strip attack. This type of attack could be
quite devastating for the user's privacy, even
without the exploitation of the shared cache. With
a capable adversary, a user's secure HTTPS
session could be hijacked, giving the user's
credentials for the HTTPS session to the attacker.
Despite this crippling attack, there could be a
defense against it by using the prefetching proxy

to help monitor messages passing through it.

Security Properties

Here I outline the security properties related to the
threat models described above.

Confidentiality
We want to prevent an adversary from monitoring
traffic through the prefetching proxy. In effect,
nonsensitive data should be shared between the
headless browsers, but no browser should know
the intended user of the data.

Integrity
Malware downloaded to the prefetching proxy
should be prevented from being shared and should
not reach the end users.

Privacy
HTTPS transfers should be trusted to pass through
the prefetching proxy securely.

Modeling in Alloy

My tool/language of choice to model and verify
these security properties was Alloy. I chose Alloy
since it lends itself to describe such abstract
systems. Provided that I'm modeling a general
system and not a specific protocol, Alloy was
naturally a more suitable choice than other
description languages such as Murphi.

I successfully modeled the proposed
system with shared cache in Alloy. In the process
of creating my model I made the following
assumptions:
• Users and prefetching clients have a one-to-one

mapping.
• One headless browser per user.
• Shared cache holds HTML responses and

embedded objects.
• Two different GETs with same content go to

the same website.
• Two different GETs with different content go

to different websites.

While the model does use some standard messages
such as GET requests and HTML responses, it
uses these in a very general sense and these are
only meant to be used for conceptual purposes.
The messages are simply intended to show the
flow through the system. The overall system is
only meant to aid current protocols; it does not add
any new protocols. Constructing my model in
such a general manner proved to be less fruitful in
terms of discovering vulnerabilities through the
use of Alloy. As a result, I analyzed all of my
proposed vulnerabilities by inspection. Given
more time, I would choose to focus on a specific
protocol to analyze in this system.

Threat Analysis

Through my use of Alloy, I was able to construct
my first two threat models; both of which were
confirmed. This, and the modeling of the
underlying system was the extent of my use of
Alloy. I continue with my analysis through
inspection.

I start my analysis with a picture of an
ideal use of the system, as can be seen in figure 3.

Eavesdropping Attack
An eavesdropping attack, (figure 4), is quite
possible in this system if the attacker only asks for
responses from the shared cache. This can be done
by setting the cache-control field in the header of
a request to only-if-cached. As a result, the
attacker's requests will not pollute the shared
cache with responses and the attacker can monitor
the shared cache by brute force.

Eavesdropping Prevention
A method for preventing this attack consists of
modifying select HTTP header fields, (e.g. cache-
control), for requests and responses at the
prefetching proxy. In effect, the prefetching proxy
would treat all HTTP requests the same and all
HTTP responses the same. As a result, the
attacker would be left unable to determine whether
the response came from the shared cache or the
website requested. In fact, it is very likely that
much of the shared cache would be polluted by the
attacker due to its brute force strategy.

Malware Infection
Another attack related to the use of the shared
cache is malware infection. It is possible for a
malicious website, visited by a user, to plant
malware into the shared cache in the prefetching
proxy. This can result in collateral damage to
other users using the prefetching proxy.

Malware Prevention
One way to alleviate this problem is to install anti-
malware software on the prefetching proxy. This
method is not trivial and should be implemented
with much care. Another obvious solution is to

Figure 5: Malware Infection

Figure 3: Ideal System

Figure 4: Eavesdropping Attack

not share cache at the prefetching proxy.

HTTPS SSL_Strip Attack
The proposed prefetching proxy system requires
SSL bridging. This requires the end user to trust
and import the certificate of the SSL bridging
server, (the prefetching proxy). This, in itself,
raises security concerns for the user since it
requires the user to entrust Hughes entirely with
all their secure HTTPS connections.

An additional concern is that of an
SSL_Strip attack, (figure 7).

In examining this threat, we are assuming the
following entities are safe:
• WebServer – website visited is not malicious
• Internet – attacker on internet cannot determine

if traffic is from prefetching proxy
• Prefetching Proxy – no vulnerabilities within

the prefetching proxy
• Satellite Connection – encrypted connection is

secure

Given these assumptions, I will only look at the
connection between the user and the satellite
connection.

HTTPS SSL_Strip Prevention
The prefetching proxy provides a convenient
intermediate point where we can check messages
passing over the system. It is possible for the
prefetching proxy to keep track of HTTP messages
and HTTPS messages passing through it. If the
prefetching proxy sees an HTTP request before an
HTTPS request for the same domain name, it can
ignore the HTTPS request in suspicion of it being
a fraudulent request. In the implementation of this
fix, the prefetching proxy would need to keep
track of requests per user. This is needed to reduce
the number of incorrect suspicions. For example,
we don't want to be suspicious of an HTTPS
request when the prior HTTP request was from a
different user.

Conclusion

Through my analysis, I learned that it is very
difficult to analyze a general system without a
particular protocol in mind. Provided more time I
would further the study one of two ways. Either I
would iterate over many different protocols,
analyzing each one individually, or I would make
my Alloy model much more flexible in terms of
messages passing from entity to entity. One way
to do the latter could be to assign two message
endpoints to each message rather than lay out
every intermediate node touched by the message.

Each threat analyzed relates to a different
class of security property. As seen in the security
properties section, the eavesdropping attack
threatens confidentiality, the malware attack
threatens integrity, and the HTTPS SSL_Strip
attack threatens privacy.

Related Articles

Smart CDNs
http://w2spconf.com/2010/papers/p13.pdf

DNS Prefetching
http://blog.chromium.org/2008/09/dns-prefetching-or-pre-resolving.html

SSL_Strip
http://www.blackhat.com/presentations/bh-dc-09/Marlinspike/BlackHat-DC-09-
Marlinspike-Defeating-SSL.pdf

Prefetching Proxy Implementation
http://www.isoc.org/inet97/proceedings/A1/A1_3.HTM

Figure 6: HTTPS SSL_Strip Assumptions

Figure 7: HTTPS SSL_Strip Attack

http://w2spconf.com/2010/papers/p13.pdf
http://www.isoc.org/inet97/proceedings/A1/A1_3.HTM
http://www.blackhat.com/presentations/bh-dc-09/Marlinspike/BlackHat-DC-09-Marlinspike-Defeating-SSL.pdf
http://www.blackhat.com/presentations/bh-dc-09/Marlinspike/BlackHat-DC-09-Marlinspike-Defeating-SSL.pdf
http://blog.chromium.org/2008/09/dns-prefetching-or-pre-resolving.html

