Prefetching Proxy

Brian Jones
CS 259
3/9/2011

Brief Overview

 HughesNet wants to decrease noticeable latency to the end
user.

* They hope to accomplish this by prefetching embedded
content in webpages.

System Model

Weab Prefetching Prefetching Web
Brnrse Client Proxy Server(s)
GET 2
™ » @ GET »(3) GET |
-
HTML
z HTML - HTML () /= O
& (7 | _GET embedded objects
3 : -
o . l -
> ﬁ - embedded objecls !.@
3 - -
= . : |
embedded objects E
cache [@ o
- _ o
@ GET embedded objects _| o
. ol 3
: 5
_ g =
- embeddad objecls d 3
< ()
H —
il -

Security Properties

 Want to prevent an adversary from monitoring traffic
through the prefetching proxy.

- Nonsensitive data should be shared between headless
browsers, but no browser should know the intended user
of the data.

* Malware downloaded to prefetching proxy should be
prevented from being shared and should not reach the end
users.

 HTTPS transfers should be trusted to pass through the
prefetching proxy securely.

Alloy Modeling

* Perfect for describing an abstract system.

* Modeled basic system as proposed.
- Included shared cache
e Assumptions:

- Users and Prefetching Clients one-to-one

- One headless browser per user

- Shared cache holds HTML responses and embedded objects
- Two different GETs with same content go to same website.

- Two different GETs with different content go to different
websites.

Alloy Code

sig PrefetchingClient extends Entity{
user : one User,
cache : one Cache

t

{

cache not in PrefetchingProxy.sharedCache

}

one sig PrefetchingProxy extends Entity{
sharedCache : one Cache,
headlessBrowser : set HeadlessBrowser

all hb : HeadlessBrowser { hb in headlessBrowser }
sharedCache not in PrefetchingClient.cache
sharedCache.data = HTMLResponse.content + embeddedObject.content

}

sig HeadlessBrowser extends Entity{
hbCache : one Cache

!

{
hbCache = PrefetchingProxy.sharedCache

!

Alloy Code

abstract sig MESSEQE[?ig embeddedObject extends Message{}

to: Entlt‘l.f,. from not in PrefetchingClient + SatelliteLink + PrefetchingProxy +

gC g

from : Entity, PrefetchingProxy.headlessBrowser + InternetLink + WebServer

content : Data iff to = none

u-:one User ' from in PrefetchingClient iff to = u

. P Tf tchi l from in SatelliteLink iff to = pc

pc: one PrefetchingClient, from in PrefetchingProxy iff to = SatelliteLink

w : one WebServer from in PrefetchingProxy.headlessBrowser iff to = PrefetchingProxy
} from in InternetLink iff to in PrefetchingProxy.headlessBrowser
{ from in WebServer iff to = Internetlink

from _!= to w not in AttackerWebServer => {

u.pClient = pc all a : AttackerWebServer {

pouser = u content != a.malware

to in User => {to = u }

f inU _{ { f } _ }else {

m_m in User __}] rom = u} some a : AttackerWebServer {

to in PrefetchingClient => {to = pc } content = a.malware

from in PrefetchingClient => { from = pc} }

to in WebServer => {to = w } }
\ from in WebServer => {from = w } content in (pc.cache).data

H

sig GETembedded extends Message{}
{
from not in User + PrefetchingProxy.headlessBrowser + Internetlink iff to = none
from in User iff to = pc
from in PrefetchingProxy.headlessBrowser iff to = InternetLink
from in Internetlink iff to = w

content in (pc.cache).data

Threat Analysis

Analysis via Alloy proved to be very difficult given the
large number of applicable protocols.

No single protocol was proposed by Hughes for this
system.

System 1s meant to aid current protocols.
Analysis primarily by inspection.

Threat model confirmed in Alloy.

Ideal System

. &

/\-

7N

Request
HTTP Request » Request Cached Regeived
Response HTTP Response

Response Cached -

Received W/ Data

Eavesdropping Attack

Request
HTTP Request > Request Cached . Received
Response R h - HTTP Response
Received - esponse Cached w/ Data

HTTP Request - _Request found
in Cache
Resp_onse -« HTTP Response
Received

w/ Data

Eavesdropping Attack

e Attacker can sift through the cache by brute force.

e Can prevent the attacker's requests from polluting the
cache by setting cache-control = only-if-cached.

Eavesdropping Attack Prevention

 Modify selected HTTP header fields for requests and
responses at the prefetching proxy.

e Treat all HTTP requests the same and all HTTP responses
the same.

* Attacker won't know if data from cache was polluted by
itself.

Eavesdropping Attack

pred eavesdroppingAttack {
one attacker : AttackerEavesdropper, user : User {
one gl, g2 : GET {
gl.content = g2.content and
gl.u = attacker and
gZ.u = user and
glw = g2w => {
attacker.attackerData '= none
attacker.attackerData = ({user.pClienthcache).data
}else {
attacker.attackerData = none
H
t
H
}

run eavesdroppingAttack

for 11 Entity, exactly 2 User, exactly 1 AttackerEavesdropper,

exactly 2 PrefetchingClient, exactly 2 HeadlessBrowser, exactly 2 WebServer,
exactly 3 Cache, 8 Data,

exactly 8 Message, 2 GETembedded, 2 embeddedObject, 2 GET, 2 HTMLResponse

Eavesdropping Attack

r
N 28
B E g &

Ideal System

. &

/\-

7N

HTTP Request » Request Cached Egggi?lz[d
Response HTTP Response

Response Cached -

Received Wi Data

Malware Infection

. &

/\-

7N

R est
HTTP Request » Request Cached Rgggived
User Infected . HTTP Response
- Malware Infection -

w/ Malware

Malware Prevention

 Install anti-malware software on the prefetching proxy.

* Or, don't share cache at prefetching proxy.

HTTPS

 Need SSL Bridging.

* End user needs to import the certificate of the SSL bridging
server (prefetching proxy).

* Prefetching Proxy still vulnerable to a SSL_Strip attack.

HTTPS SSL_Strip

ARSI
. R

L 4
4
|
|

Assume Safe

HTTPS SSL_Strip
.,

N

HTTPS Request » HTTP Request

» Saves in Cache

HTTP Response «

HTTP Response

HTTP Request » HTTPS Request

» Saves in Cache

HTTPS Response <+ HTTPS Response =

HTTPS Response

HTTPS SSL_Strip Prevention

e Prefetching Proxy can keep track of HTTP messages and
HTTPS messages.

e Ifitsees a HI'TP request before a HTTPS request for the
same domain name, don't forward HTTPS request.

Conclusion

Alloy modeling difficult without specific protocol.
Eavesdropping threat threatens confidentiality.
Malware threat threatens integrity due to vast infection.
HTTPS SSL_Strip threatens privacy.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

