CS259 Project Report
Stanford University

Location Privacy via Private Proximity Testing

Mugdha Lakhani
Winter 2011

Abstract

The system I studied [1] presents three protocols for determining proximity of two
nodes without compromising their location information. The authors present the
idea of “location tags” generated from the physical environment to strengthen the
privacy guarantees of the protocols.

Here I present the model of the first two of those protocols, and discuss possible
attacks and fixes. Both the protocols are vulnerable to online dictionary attacks,
identity spoofing and denial of service. I found that the use of location tags is
necessary to provide very basic privacy guarantees. I suggest some fixes that make
the protocols immune to these attacks.

Protocol 1: Passive Server

Both protocols rely on Facebook to provide public and private key pairs, and use
ElGamal encryption. Here’s what the protocol looks like after abstracting away the
math. There are two agents Alice and Bob. a is Alice’s location and b is Bob’s. And
functions f and g have the properties described below:

fla)

v

g (fa), b)

G(f(a),b)=1ifa=b
= random otherwise
F(a) = random to Bob

Protocol 2: Active Server
Here, the server is an active participant. a and b hold same meanings as in protocol
1. Functions f, g, and H have properties as described below:

g(b)

H(f(a), g(b) =0ifa==

= random otherwise
F(a) and g(b) are random to the server as long as no collusion with
either Alice or Bob

Security Properties and Threat Model

[assumed that functions f, g and h have properties as described in the two pictures
above, but also required, based on the protocol description, that the protocols have
the following property, which [was interested in testing.

i) Privacy: At the end of several rounds of protocol 1 among any number
of agents,(multiple simultaneous instances of the protocol, and each
agent in multiple roles simultaneously), the responder (Bob) in each
case, must not have any knowledge of a, and the initiator(Alice) must
not have any knowledge of b if a !=b. If a == b, then Alice should only
know b upto a certain approximation (which depends on the
granularity of the protocol).

ii) Confidentiality of messages

iii) Integrity of messages.

iv) Authentication: At the end of a round of protocol 1 or 2, if Alice thinks
she was talking to Bob, then she actually was. (no identity spoofing).

V) Security: At the end of a round of protocol between Alice and Bob, Bob
cannot cause Alice to compute the false answer from the protocol.

The threats were:

i) Online dictionary attacks: This is a big threat because the location space is
small.
ii) Collusion: This not only causes leaking of unauthorized location

information, but also makes dictionary attacks faster. Collusion is made
easier because multiple instances of the protocol can run simultaneously,
and each agent can be in multiple roles at once.

Murphi Model

I designed the murphi model to test privacy property, because that was the major
contribution of the paper, leaving the other security properties for analytical
analysis.

The model involves describing a probabilistic finite state system which was easier to
model using Prism, but previous research [2] shows that FHP-Murphi can handle
systems that are out of reach for Prism, especially those where state transitions
involve arithmetic operations. The lengths of the Markov chains need to be
bounded, however. I tried to model protocol 1 without using the FHP features of
Murphi (see protl.m), and found that the state space easily got too big for Murphi to
handle. I then modeled protocol 1 and 2 using the advanced features of Murphi,
notably the BPCTL and scalarset symmetry features. (see protl_adv.m and
prot2_adv.m). While the bpctl version of the model defines a finite state machine
with probabilities assigned to every state transition, [was able to model the same
behavior by storing the probability of being in the current state, for every agent, and
updating it repeatedly.

Assumptions and Minutiae

1) Encryption and hashing are implemented, to preserve confidentiality and
integrity of messages.

2) The public, private key pairs provided by Facebook at the time of
initialization of the application are accurate.

3) There is one victim, (one server), and several attackers in the model. This is
okay, since the behavior I was trying to capture doesn’t change with this
simplification.

4) Victim and server follow the protocol accurately; attackers are dishonest and
use spoofed locations.

5) The attacker can be in the role of initiator or responder, but not in the role of
server.

6) In either role, the attacker can collude with other responders and/or other
colluders, which leads to four major types of collusions, out of which, I
discarded the ones where an attacker (in either role) was colluding with
attackers who are all in the role of a responder. These collusions were
unfruitful because responders do not find out any information in these
protocols, and depend in turn on the initiators to provide them some.

Modeling a dictionary attack

This was done by assigning a variable with each attacker, that kept count of how
many locations he was yet to spoof, in an attempt to come across the right one. This
number, say N, kept on decreasing as more and more rounds of the protocol were
run, and in any round, the probability of guessing the right location was 1/N. This
enabled me to find the probability of guessing the location, and when it would rise
beyond a certain threshold, I would call it a successful dictionary attack.

Modeling collusion
Collusion between attackers could be modeled in several ways (I used them
interchangeably in my models):

i) Dividing up location space between attackers, or,

ii) Decrementing number of locations yet to explore by number of attackers,
instead of 1 after each round of the protocol, or,

iii) Adding a state transition, with probability p = (number of attackers -
1)/N, from every state to the error state(one in which location
information is compromised), which signifies the event that some other
attacker guessed the correct location enabling the attacker under
consideration to go to the error state.

The state diagrams for entities in Protocol 1 are as follows:

Initiator Responder
And the one for the entities in Protocol 2 are as follows:

I_SLEEP

No probability assigned to
state transitions of victim
and server.

(Initiator states start with I_, responder states start with R_, and server states

start with S_)
Note that the models are “attacker driven”, that is, probabilities are only assigned to
state transitions of whichever role the attacker is taking, and the victim and the
server just follow through with the steps of the protocol. An attacker may take the
role of an Initiator or a responder, but never takes the role of a server, because [am
assuming that the server does not collude with either agent. This is because,
protocol 2’s privacy property fails under collusion with the server, and the authors
were aware of the fact. Since it was not an intended use of the protocol, it wasn’t
worthwhile modeling that.

Invariants and Properties

The invariant was expressed as a PCTL formula of the form:

Ps[® U<k W] <= Threshold

Where @ = trueand W = state where the victim’s location is compromised, and
Threshold is the maximum probability of reaching the error state.

Analysis, Attacks and Fixes

Online Dictionary Attack:

These were very easily found (with high probability), which was expected, given the
small space of possible locations. They were found even more easily when the
number of attackers was increased.

The best fix for this attack is to use location tags, because they prevent spoofing of
locations altogether. (they make the probability of guessing the right location very
small). However, if using location tags is not possible, then it is good to think about
what granularity one is choosing for the protocols, because the finer the granularity,
the larger the location space becomes, and the harder it gets to guess the right
location each time. However, once a location has been guessed correctly, using a
finer granularity means that the location has been guessed to a greater accuracy,
thus causing a greater privacy breach. It is good to keep these things in mind.

Collusion

Collusion makes dictionary attacks faster, easier, and sometimes unnecessary. One
cannot, unfortunately, completely prevent collusion without involving a trusted
third party, which this protocol seeks to avoid.

Imposing restrictions on the time and extent of communication with certain
“friends” can also reduce the efficacy of dictionary attacks. I propose diving the
friend list into circles of trust, where increasing radii imply decreasing reliability on
the people belonging to that set.

Communicate
anytime, any
granularity

Can communicate
during office time,

coarse granularity

Cannot initiate
conversation

Keeping logs of previous activity can help one detect abnormal behavior, and stop
online dictionary attacks while they are being mounted.

Identity Spoofing

This was found analytically.

In protocol 1, Bob sends his message encrypted with the Alice’s public key.
Everybody in Alice’s friend list has her public key, and so anybody can pose as Bob
by sending a location encrypted with Alice’s public key, and cause the protocol to
derive the wrong result.

In protocol 2, a shared key is used to encrypt messages between Alice and server,
and Bob and server, respectively. If hashing is not implemented, then Carol can pose
as Bob, use a random key to encrypt the message for the server, and cause the
server to decrypt a wrong location, which in turn, causes the protocol to derive the
wrong result. (The authors do not suggest or recommend hashing, but defending
against this attack requires message authentication).

The fix here seems easy. The protocols can be changed to use a shared secret for
encrypting messages, and exchanging nonces at the beginning of the conversation,
similar to Needham Schroeder Lowe’s protocol (except the key pairs are taken from
Facebook), that are then to be included with every subsequent message, to ensure
no identity spoofing is possible. However, the asymmetry of the protocol depends on
the fact that no shared secret is used between the initiator and the responder (so
that responder cannot decrypt and determine Alice’s location). To fix this issue in

protocol 1, one can do the following: First exchange nonces similar to Needham
Schroeder Lowe’s protocol, and then, encrypt the nonces and the message of the
original protocol (Alice’s location encrypted with Alice’s public key) with the shared
secret. Why do we need a shared secret when we are already exchanging nonces?
This is because, more often than not, in this protocol, the message received by Alice
is random to her, and this can be achieved by encrypting any message with the
wrong shared secret (so that after decryption with the right shared secret, it is a
random number).

In protocol 2, the responder does not get any messages, so asymmetric encryption is
not necessary, and two levels of encryption can be avoided. A shared secret is
already used between initiator and server, and server and responder in protocol 2,
so addition of nonces should prevent identity spoofing.

Denial of Service

The attacks described under Identity spoofing above, can lead to denial of service, if
many attackers (in the role of responder) do the same, by sending spoofed locations,
so that the initiator is unable to respond to legitimate requests. This is very much
possible, given the fact that handheld devices have a limit on the number of devices
they can communicate with, simultaneously.

Spoofing of locations can be prevented using location tags, again, and identity
spoofing can be prevented using the fix described above.

Wrong Results

The attack described under identity spoofing can cause the protocols to derive
wrong results. In Protocol 1, Bob can send a payload that causes Alice to wrongly
derive that a == b. The authors do not admit this to be a flaw in the protocol as it
does not cause a privacy breach. However, I feel that a protocol to determine
proximity of locations should be able to say with confidence that proximity has been
tested for, correctly. I could not come up with a fix for this problem that did not
involve a trusted third party, however. Trusting third parties is getting riskier in
today’s world, and that was what the protocols were seeking to avoid. Implementing
circles of trust, can however, reduce the impact of such attacks.

Security Properties Summary

Proper Protocol 1 Protocol 2

Confidentiality Yes, assuming encryption Yes, assuming encryption
correctly implemented correctly implemented

Integrity Yes, assuming hashing Yes, assuming hashing
correctly implemented correctly implemented

Authentication No No

Security No No

Privacy Very weak under collusion None under collusion

Weak without collusion Weak without collusion

Side note: Triangulation Attack

Triangulation attack involves finding three locations around the victim, at some
known distance, to determine the victim’s exact location.

However, since both our protocols give location information approximated to the
center of a grid square, one cannot glean any more information from it by finding
more and more locations within the same grid square.

This is because if the grid is square, for example, with side 1, then, for every location
x that one finds out, the location of the victim, v, will be within a circle of 1*V2. Now
the region v lies in, will be the area of intersection of all these circles. But since all the
circles have radius 1*V2, the intersection will not be smaller than the square itself. So one
cannot get closer than the grid square to the location in this way.

Here’s a picture showing how the intersection of all circles is still bigger than the
square:

Also, it is not possible to ‘go around’ the victim because the victim’s location within
the grid square is not known, nor is any direction or angle of v with respect x is
known.

Thus, quantization of location space makes it impossible to mount a triangulation
attack on the two protocols.

Conclusion

[found that use of location tags increases the strength of the protocols’ privacy
claim immensely. Without them, the protocols were found weak, and vulnerable to
several attacks.

Avoiding a trusted third party has some unavoidable consequences, which can be
made less unfavorable by selectively engaging in conversation with certain groups
of people and varying granularity with time and place.

It was interesting to observe the tradeoff between usability (accuracy of the
protocol) and privacy. It was also fun to learn probabilistic modeling on Murphi.

Limitations and Future Work

Given more time, I would have liked to model the fix suggested for preventing
identity spoofing in the protocols. It would also be interesting to see how
background information affects the efficacy of dictionary attacks. If some learning
method could be developed for detecting dictionary attacks on the fly, it would be
very useful in preventing information leaks. Also, finding a fix for preserving
security of the protocol without involving a third party would be very welcome.

References
[1] Arvind Narayanan, Narendran Thiagarajan, Mugdha Lakhani, Michael Hamburg,
DanBoneh. Location Privacy via Private Proximity Testing. In NDSS, 2011.

[2] Giuseppe Della Penna, Benedetto Intrigila, Igor Melatti, Enrico Tronci, and
Marisa Venturini Zilli. Finite Horizon Analysis of Markov Chains with the Murphi
Verifier.

[3] Giuseppe Della Penna, Benedetto Intrigila, Igor Melatti, Enrico Tronci, and
Marisa Venturini Zilli. Bounded Probabilistic Model Checking with the Murphi
Verifier.

