Probabilistic Polynomial-Time Process Calculus for Security Protocol Analysis

J. Mitchell, A. Ramanathan, A. Scedrov, V. Teague P. Lincoln, P. Mateus, M. Mitchell

Standard analysis methods

Finite-state analysis

◆Dolev-Yao model

- Symbolic search of protocol runs
- Proofs of correctness in formal logic
- Consider probability and complexity

Easier 🛉

- More realistic intruder model
- Interaction between protocol and cryptography

IKE subprotocol from IPSEC Image: state of the subprotoc

Equivalence-based specification

Real protocol

- The protocol we want to use
- Expressed precisely in some formalism
- ◆ Idealized protocol
 - May use unrealistic mechanisms (e.g., private channels)
 - Defines the behavior we want from real protocol
 - Expressed precisely in same formalism
- Specification
 - Real protocol indistinguishable from ideal protocol
 - Beaver '91, Goldwasser-Levin '90, Micali-Rogaway '91
 - Depends on some characterization of observability
- Achieves compositionality

Compositionality (intuition)

Crypto primitives

- Ciphertext indistinguishable from noise
 - \Rightarrow encryption secure in all protocols

Protocols

- Protocol indistinguishable from ideal key distribution
- ⇒ protocol secure in all systems that rely on secure key distributions

Compositionality

- ◆Intuitively, if:
 - Q securely realizes I ,
 R securely realizes J ,

 - R, J use I as a component,
- ♦then
 - R{Q/I} securely realizes J
- Fits well with process calculus because ~ is a congruence
 - $\mathbf{Q} \approx \mathbf{I} \implies \mathcal{C}[\mathbf{Q}] \approx \mathcal{C}[\mathbf{I}]$
 - contexts constructed from R, J, simulators

Language Approach

- Write protocol in process calculus Dolev-Yao model
- Express security using observational equivalence
 - Standard relation from programming language theory P ≈ Q iff for all contexts C[], same observations about C[P] and C[Q]

Abadi-Gordon'97

- Inherently compositional
- Context (environment) represents adversary
- \bullet Use proof rules for \approx to prove security
 - Protocol is secure if no adversary can distinguish it from some idealized version of the protocol

Aspect of compositionality

Property of observational equiv

$$A \approx B \qquad C \approx C$$
$$A | C \approx B | D$$

similarly for other process forms

Probabilistic Poly-time Analysis

- Add probability, complexity
- Probabilistic polynomial-time process calc
 - Protocols use probabilistic primitives Key generation, nonce, probabilistic encryption, ...
 - Adversary may be probabilistic
- Express protocol and spec in calculus
- Security using observational equivalence • Use probabilistic form of process equivalence

Pseudo-random number generators

- Sequence generated from random seed P_n: let b = n^k-bit sequence generated from n random bits in PUBLIC (b) end
- Truly random sequence Q_n: let b = sequence of n^k random bits in PUBLIC(b) end
- ◆P is crypto strong pseudo-random number generator
 - Equivalence is asymptotic in security parameter n

Secrecy for Challenge-Response

♦Protocol P

- $\begin{array}{ll} \textbf{A} \rightarrow \textbf{B} & \left\{ \begin{array}{l} i \end{array} \right\}_{K} \\ \textbf{B} \rightarrow \textbf{A} & \left\{ \begin{array}{l} f(i) \end{array} \right\}_{K} \end{array}$
- ◆ "Obviously" secret protocol Q
 - $\begin{array}{ll} A \rightarrow B; & \{ \text{ random_number } \}_K \\ B \rightarrow A; & \{ \text{ random_number } \}_K \end{array}$

Secrecy for Challenge-Response

- $\begin{array}{l} \bullet Protocol \ P\\ A \rightarrow B: \ \{ i \}_{K}\\ B \rightarrow A: \ \{ f(i) \}_{K} \end{array}$ $\begin{array}{l} \bullet "Obviously" \ secret \ protocol \ Q\\ A \rightarrow B: \ \{ random_number \}_{K}\\ B \rightarrow A: \ \{ random_number \}_{K} \end{array}$
- Given only a ciphertext, it is difficult to generate a different ciphertext so that the respective plaintexts are related
- ◆ Analysis: P ≈ Q reduces to crypto condition related to non-malleability [Dolev, Dwork, Naor]
 - Fails for "plain old" RSA if f(i) = 2i

Security of encryption schemes

Passive adversary

- Semantic security
- Indistinguishability
- Chosen ciphertext attacks (CCA1)
 - Adversary can ask for decryption before receiving a challenge ciphertext
- Chosen ciphertext attacks (CCA2)
 - Adversary can ask for decryption before and after receiving a challenge ciphertext

Specification with Authentication

♦Protocol P

- $\textbf{A} \rightarrow \textbf{B}{:} \hspace{0.2cm} \left\{ \hspace{0.2cm} \textbf{random} \hspace{0.2cm} i \hspace{0.2cm} \right\}_K$
- $\begin{array}{ll} B \rightarrow A &: & \left\{ \begin{array}{l} f(i) \end{array} \right\}_{K} \\ A \rightarrow B &: & ``OK'' \end{array}$
- $A \rightarrow B$: "OK" if f(i) received

Obviously" authenticating protocol Q

- $A \rightarrow B: \{ random i \}_{K_{AA}}$
 - public channel private chann
- $B \rightarrow A$: {random j}_K i, j
- $A \rightarrow B$: "OK" if private i, j match public msgs

Methodology

Define general system

- Process calculus
- Probabilistic semantics
- Asymptotic observational equivalence

Apply to protocols

- Protocols have specific form
- "Attacker" is context of specific form

Nondeterminism vs encryption

◆ Alice encrypts msg and sends to Bob $A \rightarrow B$: { msg } k

- Adversary uses nondeterminism

c(b1).c(b2)...c(bn).decrypt(b1b2...bn, msg)

In reality, at most 2⁻ⁿ chance to guess n-bit key

Related work

◆ Canetti; B. Pfitzmann, Waidner, Backes

- Interactive Turing machines
- General framework for crypto properties
- Protocol *simulates* an ideal setting
- Universally composable security
- Abadi, Rogaway, Jürjens;

Herzog; Warinschi

• Toward transfer principles between formal Dolev-Yao model and computational model

Technical Challenges

- Language for prob. poly-time functions
 Extend work of Cobham, Bellantoni, Cook, Hofmann
- Replace nondeterminism with probability
 Otherwise adversary is too strong ...
- Define probabilistic equivalence
 Related to poly-time statistical tests ...
- Proof rules for probabilistic equivalence
 Use the proof system to derive protocol properties

SyntaxExpressions have size
poly in [n] \blacklozenge Bounded π -calculus with integer termsP :: = 0 $\mid c_{q([n])} \langle T \rangle$ send up to q([n]) bits $\mid c_{q([n])} \langle R \rangle$ receive $\mid \upsilon c_{q([n])} , P$ private channel $\mid [T=T] P$ test $\mid P \mid P$ parallel composition $\mid d_{q([n])}, P$ $\downarrow q_{([n])}, P$ \downarrow contrast may contain symbol n: channel width
and replication bounded by poly in [n]

Probabilistic Semantics

◆Basic idea

- Alternate between terms and processes
 - Probabilistic evaluation of terms (incl. rand)Probabilistic scheduling of parallel processes
 - in obabilistic scheduling of paraller proc

Two evaluation phases

- Outer term evaluation
- Evaluate all exposed terms, evaluate tests
- Communication
 - Match send and receive
 - Probabilistic if multiple send-receive pairs

Scheduling

Outer term evaluation

- Evaluate all exposed terms in parallel
- Multiply probabilities
- ♦Communication
 - E(P) = set of eligible subprocesses
 - S(P) = set of schedulable pairs
 - Prioritize private communication first
 - Probabilistic poly-time computable scheduler that makes progress

Example

♦Process

• c(rand+1) | c(x).d(x+1) | d(2) | d(y). e(x+1)

Outer evaluation

- $c\langle 1 \rangle \mid c(x).d\langle x+1 \rangle \mid d\langle 2 \rangle \mid d(y). e\langle x+1 \rangle$ Each
- c(2) | c(x).d(x+1) | d(2) | d(y). e(x+1) $\int \frac{1}{2} prob \frac{1}{2}$

♦ Communication

• c(1) | c(x).d(x+1) | d(2) | d(y). e(x+1)

Choose according to probabilistic scheduler

Complexity results

Polynomial time

- For each closed process expression P, there is a polynomial q(x) such that
 - For all n
 - For all probabilistic polynomial-time schedulers
 - eval of P halts in time q(|n|)

Complexity: Intuition

- Bound on number of communications
 Count total number of inputs, multiplying by q(|n|) to account for ! q(|n|). P
- Bound on term evaluation
 Closed T evaluated in time q_T(|n|)
- Bound on time for each comm step
 - Example: $c(m) \mid c(x).P \rightarrow [m/x]P$
 - ${\boldsymbol{\cdot}}$ Substitution bounded by orig length of P
 - Size of number m is bounded

– Previous steps preserve ${\ensuremath{\#}}$ occurr of x in P

Problem:

How to define process equivalence?

◆Intuition

• | Prob{ $C[P] \rightarrow "yes"$ } - Prob{ $C[Q] \rightarrow "yes"$ } | < ϵ

◆ Difficulty

- How do we choose ε?
 - Less than 1/2, 1/4, ... ? (not equiv relation)
 - Vanishingly small ? As a function of what?
- ♦ Solution
 - Use security parameter
 - Protocol is family { P_n } $_{n \geq 0}$ indexed by key length
 - Asymptotic form of process equivalence

Probabilistic Observational Equiv

- Asymptotic equivalence within f Process, context families $\{P_n\}_{n \in \mathbb{N}} \{Q_n\}_{n \in \mathbb{N}} \{C_n\}_{n \in \mathbb{N}}$
 - $P \approx_f Q$ if \forall contexts C[]. \forall obs v. $\exists n_0 . \forall n > n_0$. $|\operatorname{Prob}[\mathcal{C}_n[P_n] \rightarrow v] - \operatorname{Prob}[\mathcal{C}_n[Q_n] \rightarrow v] | < f(n)$
- Asymptotically polynomially indistinguishable $P \approx Q$ if $P \approx_f Q$ for every polynomial f(n) = 1/p(n)

Final def'n gives robust equivalence relation

One way to get equivalences

Labeled transition system

• Evaluate process is a "maximally benevolent context" Allows process read any input on a public channel or send output even if no matching input exists in process
Label with numbers "resembling probabilities"

Bisimulation relation

- If P ~ Q and P → P', then exists Q' with Q → Q' and P' ~ Q', and vice versa
- Strong form of prob equivalence But enough to get started

Provable equivalences

- Assume scheduler is stable under bisimulation
- $\blacklozenge \mathsf{P} \sim \mathsf{Q} \implies \mathcal{C}[\mathsf{P}] \sim \mathcal{C}[\mathsf{Q}]$ $\oint \mathsf{P} \sim \mathsf{Q} \implies \mathsf{P} \approx \mathsf{Q}$ \diamond P | (Q | R) \approx (P | Q) | R \diamond P | Q \approx Q | P \diamond P | O \approx P

Provable equivalences

- $P \approx v$ c. (c<T> | c(x).P) $x \notin FV(P)$
- ♦ $P{a/x} \approx v$ c. (c<a> | c(x).P) if bandwidth of c large enough
- \diamond P \approx 0 if no public channels in P
- $\blacklozenge P \approx Q \implies P\{d/c\} \approx Q\{d/c\}$ c, d same bandwidth, d fresh

 \diamond c<T> \approx c<T'> if $Prob[T \rightarrow a] = Prob[T' \rightarrow a]$ all a

Connections with modern crypto

Cryptosystem consists of three parts

- Key generation
- Encryption (often probabilistic)
- Decryption
- Many forms of security
 - Semantic security, non-malleability, chosen-ciphertext security, ...
 Formal derivation of semantic security of ElGamal from DDH and vice versa
- Common conditions use prob. games

Decision Diffie-Hellman DDH

- Standard crypto benchmark
- n security parameter (e.g., key length)
- G_n cyclic group of prime order p, length of p roughly n , g generator of G_n
- ♦ For random $a, b, c \in \{0, \ldots, p-1\}$ $\langle q^{a}, q^{b}, q^{ab} \rangle \approx \langle q^{a}, q^{b}, q^{c} \rangle$

ElGamal cryptosystem

- h security parameter (e.g., key length) G_n cyclic group of prime order p,
- length of p roughly n, g generator of G_n Keys
 - public (g,y), private (g,x) s.t. y = g^x
- **Encryption** of $m \in G_n$ + for random $k \in \{0, \dots, p\text{-}1\}$ outputs $\langle g^k, m y^k \rangle$
- Decryption of $\langle v, w \rangle$ is $w (v^{x})^{-1}$
 - For $v = g^k$, $w = m y^k$ get
 - $w (v^{x})^{-1} = m y^{k} / g^{kx} = m g^{xk} / g^{kx} = m$

Semantic security

Known equivalent:

- indistinguishability of encryptions
 - adversary can't tell from the traffic which of the two chosen messages has been encrypted • ElGamal:

 $\langle \; 1^n \, , \, g^k \, , \, m \; y^k \; \rangle \; \approx \; \langle \; 1^n \, , \, g^{k'} \, , \; m' \; y^{k'} \; \rangle$

- In case of ElGamal known to be equivalent to DDH
- Formally derivable using the proof rules

Current State of Project

- Compositional framework for protocol analysis Determine crypto requirements of protocols
 Precise definition of crypto primitives
 Probabilistic ptime language
- Process framework
 - Replace nondeterminism with rand
 Equivalence based on ptime statistical tests
- Methods for establishing equivalence Probabilistic simulation t
- Emulation and compositionality
 Examples: Decision Diffie-Hellman, ElGamal, Bellare-Rogaway, Oblivious Transfer, Computational Zero Knowledge,