Probabilistic Polynomial-Time
Process Calculus for Security Protocol Analysis
J. Mitchell, A. Ramanathan, A. Scedrov, V. Teague P. Lincoln, P. Mateus, M. Mitchell

Standard analysis methods

Δ Finite-state analysis

- Dolev-Yao model
- Symbolic search of protocol runs
- Proofs of correctness in formal logic

Consider probability and complexity

- More realistic intruder model
- Interaction between protocol and Harder cryptography

IKE subprotocol from IPSEC

Result: A and B share secret $g^{a b} \bmod p$ Analysis involves probability, modular exponentiation, digital signatures, communication networks,

Compositionality (intuition)

Crypto primitives

- Ciphertext indistinguishable from noise \Rightarrow encryption secure in all protocols
-Protocols
- Protocol indistinguishable from ideal key distribution \Rightarrow protocol secure in all systems that rely on secure key distributions

Compositionality

-Intuitively, if:

- Q securely realizes I
- R securely realizes J,
- R, J use I as a component,
- then
$R\{Q / I\}$ securely realizes J
- Fits well with process calculus
because \approx is a congruence
- $\mathrm{Q} \approx \mathrm{I} \Rightarrow C[\mathrm{Q}] \approx C[\mathrm{I}]$
- contexts constructed from R, J, simulators

Language Approach

-Write protocol in process calculus

- Dolev-Yao model
- Express security using observational equivalence
- Standard relation from programming language theory
$P \approx Q$ iff for all contexts C[], same
observations about C[P] and C[Q]
- Inherently compositional
- Context (environment) represents adversary
-Use proof rules for \approx to prove security
- Protocol is secure if no adversary can distinguish it from some idealized version of the protocol Great general idea; application is complicated

Aspect of compositionality

PProperty of observational equiv

$$
\begin{gathered}
A \approx B \quad C \approx D \\
A|C \approx B| D
\end{gathered}
$$

similarly for other process forms

The proof is easy
 $A \approx B \quad C \approx D$ $A|C \approx B| D$

-Recall definition
$P \approx Q$ iff for all contexts $C[]$, same
observations about C[P] and C[Q]

- Assume
- $A \approx B \Rightarrow \forall C[], C[A] \sim C[B]$
- Therefore
- For any $C[$, let $C[\bullet]=C[\bullet \mid D]$
- By assumption, $C^{\prime}[A] \sim C^{\prime}[B]$
- Which means that $A|D \approx B| D$

By similar reasoning

- Can show $A|C \approx A| D$
- Therefore $A|C \approx A| D \approx B \mid D$

Probabilistic Poly-time Analysis

- Add probability, complexity
-Probabilistic polynomial-time process calc
- Protocols use probabilistic primitives
- Key generation, nonce, probabilistic encryption, ...
- Adversary may be probabilistic
- Express protocol and spec in calculus
-Security using observational equivalence
- Use probabilistic form of process equivalence

Pseudo-random number generators

-Sequence generated from random seed
P_{n} : let $b=n^{k}$-bit sequence generated from n random bits in PUBLIC $\langle b\rangle$ end

- Truly random sequence
Q_{n} : let $b=$ sequence of n^{k} random bits

$$
\text { in PUBLIC }\langle b\rangle \text { end }
$$

P is crypto strong pseudo-random number generator
$P \approx Q$
Equivalence is asymptotic in security parameter n

Secrecy for Challenge-Response

\triangle Protocol P
$A \rightarrow B:\{i\}_{K}$
$B \rightarrow A:\{f(i)\}_{K}$
"Obviously" secret protocol
Q
$A \rightarrow B: \quad\{\text { random_number }\}_{K}$
$B \rightarrow A:\{\text { random_number }\}_{K}$

Secrecy for Challenge-Response

Protocol P

$$
\begin{aligned}
& A \rightarrow B:\{i\}_{K} \\
& B \rightarrow A:\{f(i)\}_{K}
\end{aligned}
$$

"Obviously" secret protocol

$$
B \rightarrow A:\{\text { random_number }\}_{K}
$$

\checkmark Analysis: $P \approx Q$ reduces to crypto condition related to non-malleability [Dolev, Dwork, Naor] - Fails for "plain old" RSA if $f(i)=2 i$

Security of encryption schemes

PPassive adversary

- Semantic security
- Indistinguishability
-Chosen ciphertext attacks (CCA1)
- Adversary can ask for decryption before receiving a challenge ciphertext
-Chosen ciphertext attacks (CCA2)
- Adversary can ask for decryption before and after receiving a challenge ciphertext

Chosen ciphertext CCA1

Passive Adversary

Chosen ciphertext CCA2

Specification with Authentication

\triangle Protocol P

$$
A \rightarrow B: \quad\{\text { random } i\}_{k}
$$

$B \rightarrow A:\{f(i)\}_{K}$
$A \rightarrow B:$ "OK" if $f(i)$ received
"Obviously" authenticating protocol Q
$A \rightarrow B: \quad\{\text { random } i\}_{K}$ public channel private channel
$B \rightarrow A:\{\text { random } j\}_{K}, i, j$
public channel private channel
$A \rightarrow B:$ "OK" if private i, j match public msgs

Methodology

- Define general system
- Process calculus
- Probabilistic semantics
- Asymptotic observational equivalence
- Apply to protocols
- Protocols have specific form
- "Attacker" is context of specific form

Nondeterminism vs encryption

\checkmark Alice encrypts msg and sends to Bob

$$
A \rightarrow B:\{m s g\}_{K}
$$

\checkmark Adversary uses nondeterminism
Process $E_{0} \quad c\langle 0\rangle|c\langle 0\rangle| \ldots \mid c\langle 0\rangle$
Process $\left.E_{1} \quad c<1\right\rangle|c\langle 1\rangle| \ldots|c<1\rangle$
Process E

$$
c\left(b_{1}\right) \cdot c\left(b_{2}\right) \ldots c\left(b_{n}\right) \cdot d e c r y p t\left(b_{1} b_{2} \ldots b_{n}, m s g\right)
$$

In reality, at most 2^{-n} chance to guess n-bit key

Related work

- Canetti; B. Pfitzmann, Waidner, Backes
- Interactive Turing machines
- General framework for crypto properties
- Protocol simulates an ideal setting
- Universally composable security
- Abadi, Rogaway, Jürjens;

Herzog: Warinschi

- Toward transfer principles between formal Dolev-Yao model and computational model

Technical Challenges

- Language for prob. poly-time functions
- Extend work of Cobham, Bellantoni, Cook, Hofmann
- Replace nondeterminism with probability
- Otherwise adversary is too strong ..
-Define probabilistic equivalence
- Related to poly-time statistical tests...
- Proof rules for probabilistic equivalence
- Use the proof system to derive protocol properties

Bounded π-calculus with integer terms
$P::=0$
| $C_{q(|n|)}\langle T\rangle \quad$ send up to $q(|n|)$ bits
| $c_{q(|n|)}(x) . P \quad$ receive
| $v C_{q(|n|)} \cdot \mathrm{P} \quad$ private channel
I [T=T]P test
I P|P parallel composition
I ! ${ }_{q(n \mid 1)}$.P bounded replication
Terms may contain symbol n; channel width and replication bounded by poly in $|n|$

Probabilistic Semantics

Basic idea

- Alternate between terms and processes
- Probabilistic evaluation of terms (incl. rand)
- Probabilistic scheduling of parallel processes
- Two evaluation phases
\rightarrow - Outer term evaluation
- Evaluate all exposed terms, evaluate tests
- Communication
- Match send and receive
- Probabilistic if multiple send-receive pairs

Example

Process

- $c\langle$ rand +1$\rangle|c(x) \cdot d\langle x+1\rangle| d\langle 2\rangle \mid d(y) . e\langle x+1\rangle$
- Outer evaluation
- $c\langle 1\rangle|c(x) \cdot d\langle x+1\rangle| d\langle 2\rangle \mid d(y) \cdot e\langle x+1\rangle\}$ Each
- $c\langle 2\rangle|c(x) \cdot d\langle x+1\rangle| d\langle 2\rangle \mid d(y) . e\langle x+1\rangle\} \operatorname{prob} \frac{1}{2}$
-Communication
- $c\langle 1\rangle|c(x) \cdot d\langle x+1\rangle| d\langle 2\rangle \mid d(y) . e\langle x+1\rangle$

Choose according to probabilistic scheduler

Complexity: Intuition

Bound on number of communications

- Count total number of inputs, multiplying
by $q(|n|)$ to account for ! ${ }_{q(|n|)}$. P
Bound on term evaluation
- Closed T evaluated in time $q_{T}(|n|)$

Bound on time for each comm step

- Example: $c\langle m\rangle \mid c(x) . P \rightarrow[m / x] P$
- Substitution bounded by orig length of P
- Size of number m is bounded
- Previous steps preserve \# occurr of \times in P

Scheduling

- Outer term evaluation
- Evaluate all exposed terms in parallel
- Multiply probabilities
-Communication
- $E(P)=$ set of eligible subprocesses
- $S(P)=$ set of schedulable pairs
- Prioritize - private communication firs \dagger
- Probabilistic poly-time computable scheduler that makes progress

Complexity results

PPolynomial time

- For each closed process expression P, there is a polynomial $q(x)$ such that
- For all n
- For all probabilistic polynomial-time schedulers eval of P halts in time $q(|n|)$

Problem:

How to define process equivalence?

- Intuition
- | $\operatorname{Prob}\{C[P] \rightarrow$ "yes" $\}-\operatorname{Prob}\{C[Q] \rightarrow$ "yes" $\} \mid<\varepsilon$
- Difficulty
- How do we choose ε ?
- Less than $1 / 2,1 / 4, \ldots$? (not equiv relation)
- Vanishingly small? As a function of what?
-Solution
- Use security parameter

Protocol is family $\left\{P_{n}\right\}_{n>0}$ indexed by key length

- Asymptotic form of process equivalence

Probabilistic Observational Equiv

- Asymptotic equivalence within f

Process, context families $\left\{P_{n}\right\}_{n 00}\left\{Q_{n}\right\}_{n>0}\left\{C_{n}\right\}_{n=0}$
$P \approx{ }_{f} Q$ if \forall contexts $C\left[\right.$]. \forall obs $v . \exists n_{0} . \forall n>n_{0}$.
$\left|\operatorname{Prob}\left[C_{n}\left[P_{n}\right] \rightarrow v\right]-\operatorname{Prob}\left[C_{n}\left[Q_{n}\right] \rightarrow v\right]\right|<f(n)$

- Asymptotically polynomially indistinguishable
$P \approx Q$ if $P \approx_{f} Q$ for every polynomial $f(n)=1 / p(n)$
Final def'n gives robust equivalence relation

One way to get equivalences

LLabeled transition system

- Evaluate process is a "maximally benevolent context"
- Allows process read any input on a public channel or send output even if no matching input exists in process
- Label with numbers "resembling probabilities"

Bisimulation relation

- If $P \sim Q$ and $P \xrightarrow{r} P^{\prime}$, then exists Q^{\prime} with $Q \xrightarrow{r} Q^{\prime}$ and $P^{\prime} \sim Q^{\prime}$, and vice versa
\checkmark Strong form of prob equivalence
- But enough to get started
[van Glabbeek - Smolka - Steffen]

Provable equivalences

- Assume scheduler is stable under bisimulation
$\Delta P \sim Q \Rightarrow C[P] \sim C[Q]$
$\checkmark P \sim Q \Rightarrow P \approx Q$
$\bullet P|(Q \mid R) \approx(P \mid Q)| R$
$\bullet P|Q \approx Q| P$
$\rightarrow P \mid O \approx P$

Provable equivalences

```
\diamondP\approxvc.(c<T> | c(x).P) x 
\bulletP{a/x} \approxvc.(c<a> | c(x).P)
            if bandwidth of c large enough
P }\approx0\mathrm{ if no public channels in P
\bulletP\approxQ # P{d/c}\approxQ{d/c}
            c,d same bandwidth, d fresh
c<<T> \approxc<T'>
        if Prob[T }->\textrm{a}]=\operatorname{Prob[T'}->\textrm{a}]\mathrm{ all a
```


Decision Diffie-Hellman DDH

-Standard crypto benchmark

- n security parameter (e.g., key length)
G_{n} cyclic group of prime order p, length of p roughly n,
g generator of G_{n}
- For random $a, b, c \in\{0, \ldots, p-1\}$
$\left\langle g^{a}, g^{b}, g^{a b}\right\rangle \approx\left\langle g^{a}, g^{b}, g^{c}\right\rangle$

ElGamal cryptosystem

-n security parameter (e.g., key length)
G_{n} cyclic group of prime order p length of p roughly n, g generator of G_{n}
-Keys
public $\langle g, y\rangle$, private $\langle g, x\rangle$ s.t. $y=g^{x}$

- Encryption of $m \in G_{n}$
- for random $k \in\{0, \ldots, p-1\}$ outputs $\left\langle g^{k}, m y^{k}\right\rangle$

Decryption of $\langle v, w\rangle$ is $w\left(v^{x}\right)^{-1}$
For $v=g^{k}, w=m y^{k}$ get
$w\left(v^{x}\right)^{-1}=m y^{k} / g^{k x}=m g^{\star k} / g^{k x}=m$

Current State of Project

- Compositional framework for protocol analysis Determine crypto requirements of protocols Precise definition of crypto primitives
- Probabilistic ptime language
- Process framework
- Replace nondeterminism with rand

Equivalence based on ptime statistical tests

- Methods for establishing equivalence

Probabilistic simulation technique

- Emulation and compositionality
- Examples:

Decision Diffie-Hellman, ElGamal, Bellare-Rogaway, Oblivious Transfer, Computational Zero Knowledge,

Semantic security

- Known equivalent:
indistinguishability of encryptions
- adversary can't tell from the traffic which of the two chosen messages has been encrypted ElGamal:

$$
\left\langle 1^{n}, g^{k}, m y^{k}\right\rangle \approx\left\langle 1^{n}, g^{k^{\prime}}, m^{\prime} y^{k^{\prime}}\right\rangle
$$

- In case of ElGamal known to be equivalent to DDH
\checkmark Formally derivable using the proof rules

