
1

Security in Process Calculi 

CS 259

Vitaly Shmatikov

Overview

�Pi calculus
• Core language for parallel programming
• Modeling security via name scoping

�Applied pi calculus
• Modeling cryptographic primitives with functions 

and equational theories
• Equivalence-based notions of security
• A little bit of operational semantics
• Security as testing equivalence

Pi Calculus

�Fundamental language for concurrent systems
• High-level mathematical model of parallel processes
• The “core” of concurrent programming languages
• By comparison, lambda-calculus is the “core” of 

functional programming languages

�Mobility is a basic primitive 
• Basic computational step is the transfer of a 

communication link between two processes
• Interconnections between processes change as they 

communicate

�Can be used as a general programming language

[Milner et al.] A Little Bit of History

�1980: Calculus of Communicating Systems (CCS)
�1992: Pi Calculus [Milner, Parrow, Walker]

• Ability to pass channel names between processes

�1998: Spi Calculus [Abadi, Gordon]

• Adds cryptographic primitives to pi calculus
• Security modeled as scoping
• Equivalence-based specification of security properties
• Connection with computational models of cryptography

�2001: Applied Pi Calculus [Abadi, Fournet]

• Generic functions, including crypto primitives

[Milner]

Pi Calculus Syntax

�Terms
• M, N ::=  x variables

|  n names

�Processes
• P,Q ::=   nil empty process

| ū〈N〉.P send term N on channel u

| u(x).P receive term from channel P and assign to x

| !P replicate process P

| P|Q run processes P and Q in parallel

| (νn)P restrict name n to process P

Let u range over
names and variables}

Modeling Secrecy with Scoping

A(M) = c〈M〉
B = c(x).nil

P(M) = (νc)(A(M)|B)

A BM

channel c

�A sends M to B over secure channel c

This restriction ensures that channel c is 
“invisible” to any process except A and B
(other processes don’t know name c)

-



2

Secrecy as Equivalence

A(M) = c〈M〉
B = c(x).nil

P(M) = (νc)(A(M)|B)

Without (νc), attacker could run 
process c(x) and tell the difference
between P(M) and P(M’)

-

�P(M) and P(M’) are “equivalent” for any values 
of M and M’
• No attacker can distinguish P(M) and P(M’)

�Different notions of “equivalence”
• Testing equivalence or observational congruence
• Indistinguishability by any probabilistic polynomial-

time Turing machine

Another Formulation of Secrecy

A(M) = c〈M〉
B = c(x).nil

P(M) = (νc)(A(M)|B)

-

�No attacker can learn name n from P(n)
• Let Q be an arbitrary attacker process, and suppose 

it runs in parallel with P(n)
• For any process Q in which n does not occur free, 

P(n) | Q will never output n

Modeling Authentication with Scoping

A(M) = c〈M〉
B = c(x).d〈x〉

P(M) = (νc)(A(M)|B)

A BM

channel c

�A sends M to B over secure channel c
�B announces received value on public channel d

-

M

channel d

-

Specifying Authentication

A(M) = c〈M〉
B = c(x).d〈x〉

P(M) = (νc)(A(M)|B)

-

�For any value of M, if B outputs M on channel d, 
then A previously sent M on channel c

-

A Key Establishment Protocol

A B

S

1. A and B have pre-established pairwise keys with server S
� Model these keys as names of pre-existing communication channels

2. A creates a new key and sends it to S, who forwards it to B
� Model this as creation of a new channel name

3. A sends M to B encrypted with the new key, B outputs M

CAS CSB

Create new
channel CAB

Send name CAB Send name CAB

Send data on CAB

M

channel d

M

Key Establishment in Pi Calculus

A B

S
CAS CSB

Create new
channel CAB

Send name CAB Send name CAB

Send data on CAB

M

channel d

M

A(M) = (νcAB)
S = cAS(x).cSB〈x〉
B = cSB(x)

P(M) = (νcAS)(νcSB)(A(M)|B|S)

__ __

__
_ Note communication on a channel

with a dynamically generated name

.cAB〈M〉cAS〈cAB〉

.x(y).d〈y〉



3

Applied Pi Calculus

�In pi calculus, channels are the only primitive
�This is enough to model some forms of security

• Name of a communication channel can be viewed as an 
“encryption key” for traffic on that channel

– A process that doesn’t know the name can’t access the channel

• Channel names can be passed between processes
– Useful for modeling key establishment protocols

�To simplify protocol specification, applied pi 
calculus adds functions to pi calculus
• Crypto primitives modeled by functions and equations

Applied Pi Calculus: Terms

M, N ::=   x Variable

|  n Name

|  f(M1,...,Mk) Function application

�Standard functions
• pair(), encrypt(), hash(), …

�Simple type system for terms
• Integer, Key, Channel〈Integer〉, Channel〈Key〉

Applied Pi Calculus: Processes

P,Q ::= nil empty process

| ū〈N〉.P send term N on channel u

| u(x).P receive from channel P and assign to x

| !P replicate process P

| P|Q run processes P and Q in parallel

| (νn)P restrict name n to process P

| if M = N conditional

then P else Q

Modeling Crypto with Functions

�Introduce special function symbols to model 
cryptographic primitives

�Equational theory models cryptographic properties
�Pairing

• Functions pair, first, second with equations:
first(pair(x,y)) = x
second(pair(x,y)) = y

�Symmetric-key encryption
• Functions symenc, symdec with equation:

symdec(symenc(x,k),k)=x

More Equational Theories

�Public-key encryption
• Functions pk,sk generate public/private key pair 

pk(x),sk(x) from a random seed x
• Functions pdec,penc model encryption and decryption 

with equation:
pdec(penc(y,pk(x)),sk(x)) = y

• Can also model “probabilistic” encryption:
pdec(penc(y,pk(x),z),sk(x)) = y 

�Hashing
• Unary function hash with no equations
• hash(M) models applying a one-way function to term M

Models random salt 
(necessary for semantic security)

Yet More Equational Theories

�Public-key digital signatures
• As before, functions pk,sk generate public/private key 

pair pk(x),sk(x) from a random seed x
• Functions sign,verify model signing and verification with 

equation:
verify(y,sign(y,sk(x)),pk(x)) = y

�XOR
• Model self-cancellation property with equation:

xor(xor(x,y),y) = x
• Can also model properties of cyclic redundancy codes:

crc(xor(x,y)) = xor(crc(x),crc(y))



4

Dynamically Generated Data

A(M) = c〈(M,s)〉
B = c(x).if second(x)=s

then d〈first(x)〉
P(M) = (νs)(A(M)|B)

A B(M,s)

channel c

�Use built-in name generation capability of pi 
calculus to model creation of new keys and nonces

-

M

channel d

-

Models creation of fresh capability 
every time A and B communicate

capability s may
be intercepted!

Better Protocol with Capabilities

A(M) = c〈(M,hash(s,M))〉
B = c(x).if second(x)=

hash(s,first(x))
then d〈first(x)〉

P(M) = (νs)(A(M)|B)

A B(M,hash(s,M))

channel c

-

M

channel d

-

Hashing protects integrity of 
M and secrecy of s

Proving Security

�“Real” protocol
• Process-calculus specification of the actual protocol

�“Ideal” protocol 
• Achieves the same goal as the real protocol, but is 

secure by design
• Uses unrealistic mechanisms, e.g., private channels
• Represents the desired behavior of real protocol

�To prove the real protocol secure, show that no 
attacker can tell the difference between the real 
protocol and the ideal protocol
• Proof will depend on the model of attacker observations

Example: Challenge-Response

�Challenge-response protocol
A → B {i}k

B → A {i+1}k

�This protocol is secure if it is indistinguishable 
from this “ideal” protocol
A → B {random1}k

B → A {random2}k

Example: Authentication

�Authentication protocol
A → B {i}k

B → A {i+1}k

A → B “Ok”

�This protocol is secure if it is indistinguishable from 
this “ideal” protocol
A → B {random1}k

B → A {random2}k

B → A random1, random2 on a magic secure channel
A → B “Ok” if numbers on real & magic channels match

Security as Observational Equivalence

�Need to prove that two processes are 
observationally equivalent to the attacker

�Complexity-theoretic model
• Prove that two systems cannot be distinguished by any 

probabilistic polynomial-time adversary
[Beaver ’91, Goldwasser-Levin ’90, Micali-Rogaway ’91]

�Abstract process-calculus model
• Cryptography is modeled by abstract functions
• Prove testing equivalence between two processes
• Proofs are easier, but it is nontrivial to show 

computational completeness [Abadi-Rogaway ’00]



5

Structural Equivalence

P | nil ≡ P
P | Q  ≡ Q | P

P | (Q | R)  ≡ (P | Q) | R
!P  ≡ P | !P

(νm) (νn)P ≡ (νn) (νm)P
(νn)nil ≡ nil

(νn)(P | Q)  ≡ P | (νn)Q if n is not a free name in P

P[M/x]  ≡ P[N/x]        if M=N in the equational theory

Operational Semantics

�Reduction → is the smallest relation on 
closed processes that is closed by 
structural equivalence and application of 
evaluation contexts such that

ā〈M〉.P | a(x).Q → P | Q[M/x]
models P sending M to Q on channel a

if M = M then P else Q  → P
if M = N then P else Q  → Q

for any ground M, N s.t. M ≠ N in the equational theory

�Standard process-calculus notions of 
equivalence such as bisimulation are not 
adequate for cryptographic protocols
• Different ciphertexts leak no information to the 

attacker who does not know the decryption keys

�(νk)c〈symenc(M,k)〉 and (νk)c〈symenc(N,k)〉
send different messages, but they should be 
treated as equivalent when proving security
• In each case, a term is encrypted under a fresh key
• No test by the attacker can tell these apart

Equivalence in Process Calculus

- -

Testing Equivalence

�Informally, two processes are equivalent if no 
environment can distinguish them

�A test is a process R and channel name w
• Informally, R is the environment and w is the channel 

on which the outcome of the test is announced

�A process P passes a test (R,w) if P | R may 
produce an output on channel w
• There is an interleaving of P and R that results in R 

being able to perform the desired test

�Two processes are equivalent if they pass the 
same tests

Advantages and Disadvantages

�Proving testing equivalence is hard
• Need to quantify over all possible attacker processes 

and all tests they may perform
• There are some helpful proof techniques, but no fully 

automated tools and very few decision procedures

�Testing equivalence is a congruence
• Can compose protocols like building blocks

�Equivalence is the “right” notion of security
• Direct connection with definitions of security in 

complexity-theoretic cryptography
• Contrast this with invariant- and trace-based definitions

Bibliography

� Robin Milner. “Communication and Concurrency”. Prentice-Hall, 1989.
• Calculus of communicating systems (CCS)

� Robin Milner. “Communicating and Mobile Systems: the π-Calculus”. 
Cambridge University Press, 1999.
• Pi calculus

� Martin Abadi and Andrew Gordon. “A calculus for cryptographic 
protocols: the spi-calculus”. Information and Computation 148(1), 1999.
• Spi calculus

� Martin Abadi and Cedric Fournet. “Mobile values, new names, and 
secure communication”. POPL 2001.
• Applied pi calculus

� Martin Abadi and Phillip Rogaway. “Reconciling two views of 
cryptography”. Journal of Cryptology 15(2), 2002.
• On equivalence of complexity-theoretic and process-calculus models


