
1

Logic for Computer Security
Protocols

Ante Derek

Outline

�Last lecture
• Floyd-Hoare logic of programs
• BAN logic

�Today
• Compositional Logic for Proving Security

Properties of Protocols

Intuition

�Reason about local information
• I chose a new number
• I sent it out encrypted
• I received it decrypted
• Therefore: someone decrypted it

�Incorporate knowledge about protocol
• Protocol: Server only sends m if it received m’
• If server not corrupt and I receive m signed by

server, then server received m’

Intuition: Picture

�Alice’s information
• Protocol
• Private data
• Sends and receives

Honest Principals,
Attacker

Protocol

Private
Data

Example: Challenge-Response

A B

m, A

n, sigB {m, n, A}

sigA {m, n, B}

�Alice reasons: if Bob is honest, then:
• only Bob can generate his signature. [protocol independent]
• if Bob generates a signature of the form sigB{m, n, A},

– he sends it as part of msg2 of the protocol and
– he must have received msg1 from Alice. [protocol specific]

�Alice deduces: Received (B, msg1) Λ Sent (B, msg2)

Formalizing the Approach

�Language for protocol description
• Arrows-and-messages are informal.

�Protocol Semantics
• How does the protocol execute?

�Protocol logic
• Stating security properties.

�Proof system
• Formally proving security properties.

2

Cords

�“protocol programming language”
• A protocol is described by specifying a

“program” for each role
– Server = [receive x; new n; send {x, n}]

�Building blocks
• Terms

– names, nonces, keys, encryption, …
• Actions

– send, receive, pattern match, …

Terms

t ::= c constant term
x variable
N name
K key
t, t tupling
sigK{t} signature
encK{t} encryption

Example: x, sigB{m, x, A} is a term

Actions

send t; send a term t
receive x; receive a term into variable x
match t/p(x); match term t against p(x)

�A Cord is just a sequence of actions
�Notation:

• we often omit match actions
• receive sigB{A, n} = receive x; match x/sigB{A, n}

Challenge-Response as Cords

A B

m, A

n, sigB {m, n, A}

sigA {m, n, B}

InitCR(A, X) = [
new m;
send A, X, {m, A};
receive X, A, {x, sigX{m, x, A}};
send A, X, sigA{m, x, X}};

]

RespCR(B) = [
receive Y, B, {y, Y};
new n;
send B, Y, {n, sigB{y, n, Y}};
receive Y, B, sigY{y, n, B}};

]

Cord Spaces

�Cord space is a multiset of cords
�Cords may react

• via communication
• via internal actions

�Sample reaction steps:
• Communication:

[S; send t; S’] ⊗ [T; receive x; T’] ⇒ [S; S’] ⊗ [T; T’(t/x)]
• Matching:

[S; match p(t)/p(x); S’] ⇒ [S; S’(t/x)]

Execution Model

� Initial configuration
� Protocol is a finite set of roles
� Set of principals and keys
� Assignment of ≥1 role to each principal

� Run

new x send {x}B

receive {x}B

A

B

C

Position in run

receive {z}B

new z send {z}B

3

Logical assertions

�Modal operator
• [actions] P φ - after actions, P reasons φ

�Predicates in φ
• Send(X,m) - principal X sent message m
• Receive(X,m) – principal X received message m
• Verify(X,m) - X verified signature m
• Has(X,m) - X created m or received msg

containing m and has keys to extract m from msg
• Honest(X) – X follows rules of protocol

Formulas true at a position in run

� Action formulas
a ::= Send(P,m) | Receive (P,m) | New(P,t)

| Decrypt (P,t) | Verify (P,t)
� Formulas

ϕ ::= a | Has(P,t) | Fresh(P,t) | Honest(N)
| Contains(t1, t2) | ¬ϕ | ϕ1∧ ϕ2 | ∃x ϕ
| �ϕ | �ϕ

� Example
After(a,b) = � (b ∧ ��a)

Semantics

�Protocol Q
• Defines set of roles (e.g, initiator, responder)
• Run R of Q is sequence of actions by principals

following roles, plus attacker
�Satisfaction

• Q, R |= [actions] P φ
Some role of P in R does exactly actions and φ is
true in state after actions completed

• Q |= [actions] P φ
Q, R |= [actions] P φ for all runs R of Q

Security Properties

�Authentication for Initiator
CR |= [InitCR(A, B)] A Honest(B) ⊃
ActionsInOrder(

Send(A, {A,B,m}),
Receive(B, {A,B,m}),
Send(B, {B,A,{n, sigB {m, n, A}}}),
Receive(A, {B,A,{n, sigB {m, n, A}}})

)

Security Properties

�Shared secret
NS |= [InitNS(A, B)] A Honest(B) ⊃
(Has(X, m) ⊃ X=A ∧ X=B)

Proof System

�Goal: formally prove properties
�Axioms

• Simple formulas provable by hand
�Inference rules

• Proof steps
�Theorem

• Formula obtained from axioms by
application of inference rules

4

Sample axioms about actions

�New data
• [new x]P Has(P,x)
• [new x]P Has(Y,x) ⊃ Y=P

�Actions
• [send m]P �Send(P,m)

�Knowledge
• [receive m]P Has(P,m)

�Verify
• [match x/sigX{m}] P � Verify(P,m)

Reasoning about knowledge

�Pairing
• Has(X, {m,n}) ⊃ Has(X, m) ∧ Has(X, n)

�Encryption
• Has(X, encK(m)) ∧ Has(X, K-1) ⊃ Has(X, m)

Encryption and signature

�Public key encryption
Honest(X) ∧ �Decrypt(Y, encX{m}) ⊃ X=Y

�Signature
Honest(X) ∧ �Verify(Y, sigX{m}) ⊃

∃ m’ (�Send(X, m’) ∧ Contains(m’, sigX{m})

Sample inference rules

�Preservation rules
[actions]P Has(X, t)

[actions; action]P Has(X, t)

�Generic rules
[actions]P φ [actions]P ϕ

[actions]P φ ∧ ϕ

Bidding conventions (motivation)

�Blackwood response to 4NT
– 5♣ : 0 or 4 aces
– 5♦ : 1 ace
– 5♥ : 2 aces
– 5♠ : 3 aces

�Reasoning
• If my partner is following Blackwood,

then if she bid 5♥, she must have 2 aces

Honesty rule (rule scheme)

∀roles R of Q. ∀ initial segments A ⊆ R.
Q |- [A]X φ

Q |- Honest(X) ⊃ φ

• This is a finitary rule:
– Typical protocol has 2-3 roles
– Typical role has 1-3 receives
– Only need to consider A waiting to receive

5

Honesty rule (example use)

∀roles R of Q. ∀ initial segments A ⊆ R.
Q |- [A]X φ

Q |- Honest(X) ⊃ φ

• Example use:
– If Y receives a message from X, and

Honest(X) ⊃ (Sent(X,m) ⊃ Received(X,m’))
then Y can conclude
Honest(X) ⊃ Received(X,m’))

Correctness of CR

CR |- [InitCR(A, B)] A Honest(B) ⊃
ActionsInOrder(

Send(A, {A,B,m}),
Receive(B, {A,B,m}),
Send(B, {B,A,{n, sigB {m, n, A}}}),
Receive(A, {B,A,{n, sigB {m, n, A}}})

)

InitCR(A, X) = [
new m;
send A, X, {m, A};
receive X, A, {x, sigX{m, x, A}};
send A, X, sigA{m, x, X}};

]

RespCR(B) = [
receive Y, B, {y, Y};
new n;
send B, Y, {n, sigB{y, n, Y}};
receive Y, B, sigY{y, n, B}};

]

Correctness of CR – step 1

1. A reasons about it’s own actions
CR |- [InitCR(A, B)] A

� Verify(A, sigB {m, n, A})

InitCR(A, X) = [
new m;
send A, X, {m, A};
receive X, A, {x, sigX{m, x, A}};
send A, X, sigA{m, x, X}};

]

RespCR(B) = [
receive Y, B, {y, Y};
new n;
send B, Y, {n, sigB{y, n, Y}};
receive Y, B, sigY{y, n, B}};

]

Correctness of CR – step 2

2. Properties of signatures
CR |- [InitCR(A, B)] A Honest(B) ⊃
∃ m’ (�Send(B, m’) ∧ Contains(m’, sigB {m, n, A})

InitCR(A, X) = [
new m;
send A, X, {m, A};
receive X, A, {x, sigX{m, x, A}};
send A, X, sigA{m, x, X}};

]

RespCR(B) = [
receive Y, B, {y, Y};
new n;
send B, Y, {n, sigB{y, n, Y}};
receive Y, B, sigY{y, n, B}};

]

Correctness of CR – Honesty

Honesty invariant
CR |- Honest(X) ∧
�Send(X, m’) ∧ Contains(m’, sigx {y, x, Y}) ∧ ¬ �New(X, y) ⊃

m= X, Y, {x, sigB{y, x, Y}} ∧ �Receive(X, {Y, X, {y, Y}})

InitCR(A, X) = [
new m;
send A, X, {m, A};
receive X, A, {x, sigX{m, x, A}};
send A, X, sigA{m, x, X}};

]

RespCR(B) = [
receive Y, B, {y, Y};
new n;
send B, Y, {n, sigB{y, n, Y}};
receive Y, B, sigY{y, n, B}};

]

Correctness of CR – step 3

3. Use Honesty rule
CR |- [InitCR(A, B)] A Honest(B) ⊃

� Receive(B, {A,B,m}),

InitCR(A, X) = [
new m;
send A, X, {m, A};
receive X, A, {x, sigX{m, x, A}};
send A, X, sigA{m, x, X}};

]

RespCR(B) = [
receive Y, B, {y, Y};
new n;
send B, Y, {n, sigB{y, n, Y}};
receive Y, B, sigY{y, n, B}};

]

6

Correctness of CR – step 4

4. Use properties of nonces for
temporal ordering
CR |- [InitCR(A, B)] A Honest(B) ⊃ Auth

InitCR(A, X) = [
new m;
send A, X, {m, A};
receive X, A, {x, sigX{m, x, A}};
send A, X, sigA{m, x, X}};

]

RespCR(B) = [
receive Y, B, {y, Y};
new n;
send B, Y, {n, sigB{y, n, Y}};
receive Y, B, sigY{y, n, B}};

]

Complete proof

We have a proof. So what?

� Soundness Theorem:
• if Q |- φ then Q |= φ
• If φ is a theorem then φ is a valid

formula
�φ holds in any step in any run of

protocol Q
• Unbounded number of participants
• Dolev-Yao intruder

Weak Challenge-Response

A B

m

n, sigB {m, n}

sigA {m, n}

InitWCR(A, X) = [
new m;
send A, X, {m};
receive X, A, {x, sigX{m, x}};
send A, X, sigA{m, x}};

]

RespWCR(B) = [
receive Y, B, {y};
new n;
send B, Y, {n, sigB{y, n}};
receive Y, B, sigY{y, n}};

]

Correctness of WCR – step 1

1. A reasons about it’s own actions
WCR |- [InitWCR(A, B)] A

� Verify(A, sigB {m, n})

InitWCR(A, X) = [
new m;
send A, X, {m};
receive X, A, {x, sigX{m, x}};
send A, X, sigA{m, x}};

]

RespWCR(B) = [
receive Y, B, {y};
new n;
send B, Y, {n, sigB{y, n}};
receive Y, B, sigY{y, n}};

]

Correctness of WCR – step 2

2. Properties of signatures
CR |- [InitCR(A, B)] A Honest(B) ⊃
∃ m’ (�Send(B, m’) ∧ Contains(m’, sigB {m, n, A})

InitWCR(A, X) = [
new m;
send A, X, {m};
receive X, A, {x, sigX{m, x}};
send A, X, sigA{m, x}};

]

RespWCR(B) = [
receive Y, B, {y};
new n;
send B, Y, {n, sigB{y, n}};
receive Y, B, sigY{y, n}};

]

7

Correctness of WCR – Honesty

Honesty invariant
CR |- Honest(X) ∧
�Send(X, m’) ∧ Contains(m’, sigx {y, x}) ∧ ¬ �New(X, y) ⊃

m= X, Z, {x, sigB{y, x}} ∧ �Receive(X, {Z, X, {y, Z}})

InitWCR(A, X) = [
new m;
send A, X, {m};
receive X, A, {x, sigX{m, x}};
send A, X, sigA{m, x}};

]

RespWCR(B) = [
receive Y, B, {y};
new n;
send B, Y, {n, sigB{y, n}};
receive Y, B, sigY{y, n}};

]

Correctness of WCR – step 3

3. Use Honesty rule
WCR |- [InitWCR(A, B)] A Honest(B) ⊃

� Receive(B, {Z,B,m}),

InitWCR(A, X) = [
new m;
send A, X, {m};
receive X, A, {x, sigX{m, x}};
send A, X, sigA{m, x}};

]

RespWCR(B) = [
receive Y, B, {y};
new n;
send B, Y, {n, sigB{y, n}};
receive Y, B, sigY{y, n}};

]

Result

�WCR does not have the strong
authentication property for the
initiator

�Counterexample
• Intruder can forge senders and

receivers identity in first two messages
– A -> X(B) m
– X(C) -> B m
– B -> X(C) n, sigB(m, n)
– X(B) ->A n, sigB(m, n)

Benchmarks

�Can prove authentication for CR
�Proof fails for WCR
�Can prove repaired NSL protocol
�Proof fails for original NS protocol
�Proof fails for a variant of GDOI

protocol (C. Meadows, D. Pavlovic)

Extensions

�Add Diffie-Hellman primitive
• Can prove authentication and secrecy for

key exchange protocols (STS, ISO-
97898-3)

�Add symmetric encryption and
hashing
• Can prove authentication for ISO-9798-

2, SKID3

Derivation system

�Protocol derivation
• Build security protocols by combining parts from

standard sub-protocols
�Proof of correctness

• Prove protocols correct using logic that follows
steps of derivation

�Reuse proofs

8

ISO-9798-3 Key Exchange

�Authentication
• Do we need to prove it from scratch?

�Shared secret: gab

A B

ga, A

gb, sigB {ga, gb, A}

sigA {ga, gb, B}

Abstract challenge response

� Free variables m and n instead of nonces
� Modal form: φ [actions] ϕ

• precondition: Fresh(A,m)
• actions: [InitACR]A
• postcondition: Honest(B) ⊃ Authentication

� Secrecy is proved from properties of
Diffie-Hellman

InitACR(A, X) = [
send A, X, {m};
receive X, A, {x, sigX{m, x}};
send A, X, sigA{m, x}};

]

RespACR(B) = [
receive Y, B, {y};
send B, Y, {n, sigB{y, n}};
receive Y, B, sigY{y, n}};

]

Parallel protocol composition

�Assume that agents run both CR and
NSL using same public/private keys
• Is authentication property preserved?

�Honesty rule is only protocol specific
step in the proof sytem
• Properties are preserved if the new

protocol satisfies honesty invariants

Combining protocols

CR � Honest(X) ⊃ … NSL � Honest(X) ⊃ …

Γ Γ’

Γ |- CRAuthentication Γ’ |- NSLAuthentication

Γ∪Γ’ |- CRAuthentication Γ∪Γ’ |- NSLAuthentication

Γ∪Γ’ |- CRAuthentication ∧ NSLAuthentication

CR • NSL � Γ∪Γ’

CR • NSL � CRAuthentication ∧ NSLAuthentication

=

Current work

�Formalize protocol refinements and
transformations

�Automate proofs

