Logic for Computer Security Protocols

Ante Derek

Outline

◆Last lecture

- Floyd-Hoare logic of programs
- BAN logic
- Today
 - Compositional Logic for Proving Security Properties of Protocols

Intuition

Reason about local information

- I chose a new number
- I sent it out encrypted
- I received it decrypted
- Therefore: someone decrypted it
- ◆Incorporate knowledge about protocol
 - Protocol: Server only sends m if it received m'
 If server not corrupt and I receive m signed by server, then server received m'

Formalizing the Approach

- Language for protocol description
 Arrows-and-messages are informal.
- Protocol Semantics
 - How does the protocol execute?
- Protocol logic
- Stating security properties.
- Proof system
 - Formally proving security properties.

Cords

- "protocol programming language"
 - A protocol is described by specifying a "program" for each role

 Server = [receive x; new n; send {x, n}]
- Building blocks
 - Terms
 - names, nonces, keys, encryption, ...
 - Actions
 - send, receive, pattern match, ...

Terms		
t ::=	с	constant term
	×	variable
	N	name
	K	key
	t, t	tupling
	sig _k {t}	signature
	enc _v {t}	encryption

Example: $x, sig_{B}\{m, x, A\}$ is a term

Actions

send t;	send a term t
receive x;	receive a term into variable x
match t/p(x);	match term t against p(x)

- A Cord is just a sequence of actions
- Notation:
 - we often omit match actions
 - receive sig_B{A, n} = receive x; match x/sig_B{A, n}

Cord Spaces

- Cord space is a multiset of cords
- Cords may react
 - via communication
 - via internal actions
- Sample reaction steps:
 - Communication:
 - [S; send t; S'] \otimes [T; receive x; T'] \Rightarrow [S; S'] \otimes [T; T(t/x)] \cdot Matching:
 - [S; match p(t)/p(x); S'] \Rightarrow [S; S'(t/x)]

Execution Model

Initial configuration

- Protocol is a finite set of roles
- Set of principals and keys
- Assignment of ≥ 1 role to each principal

Logical assertions

Modal operator

• [*actions*] $_{P} \phi$ - after actions, P reasons ϕ

Predicates in

- Send(X,m) principal X sent message m
- Receive(X,m) principal X received message m
- Verify(X,m) X verified signature m
- Has(X,m) X created m or received msg
 - containing m and has keys to extract m from msg
- Honest(X) X follows rules of protocol

Formulas true at a position in run

Action formulas

- a ::= Send(P,m) | Receive (P,m) | New(P,t) | Decrypt (P,t) | Verify (P,t)
- Formulas
 - $\begin{array}{l} \phi ::= \mathsf{a} \mid \mathsf{Has}(\mathsf{P},\mathsf{t}) \mid \mathsf{Fresh}(\mathsf{P},\mathsf{t}) \mid \mathsf{Honest}(\mathsf{N}) \\ \mid \quad \mathsf{Contains}(\mathsf{t}_1,\,\mathsf{t}_2) \mid \neg \phi \mid \phi_1 \land \phi_2 \mid \exists x \ \phi \\ \mid \quad \bigcirc \phi \mid \diamondsuit \phi \end{array}$
- Example After(a,b) = \diamond (b $\land \bigcirc \diamond$ a)

Semantics

Protocol Q

Defines set of roles (e.g. initiator, responder)
Run R of Q is sequence of actions by principals following roles, plus attacker

♦ Satisfaction

- Q, R |= [actions]_P φ
 Some role of P in R does exactly actions and φ is true in state after actions completed
- Q |= [actions]_P φ
 Q, R |= [actions]_P φ for all runs R of Q

Security Properties

Authentication for Initiator

 $CR \models [InitCR(A, B)]_{A} Honest(B) \supset ActionsInOrder($ $Send(A, {A,B,m}),$ $Receive(B, {A,B,m}),$ $Send(B, {B,A,{n, sig_{B} {m, n, A}}),$ $Receive(A, {B,A,{n, sig_{B} {m, n, A}})),$ $Receive(A, {B,A,{n, sig_{B} {m, n, A}})))$

Security Properties

- Shared secret
 - NS |= [InitNS(A, B)]_A Honest(B) ⊃ (Has(X, m) ⊃ X=A ∧ X=B)

Proof System

- ◆Goal: formally prove properties
- ♦Axioms
 - Simple formulas provable by hand
- ◆Inference rules
 - Proof steps
- ◆Theorem
 - Formula obtained from axioms by application of inference rules

Sample axioms about actions

♦New data

- [new x]_P Has(P,x)
- [new x]_P Has(Y,x) \supset Y=P
- ♦ Actions
 - [send m] $_{P}$ \Diamond Send(P,m)
- ◆Knowledge
 [receive m]_P Has(P,m)
- ♦Verify
 - [match x/sig_x{m}] P
 Verify(P,m)

Reasoning about knowledge

♦Pairing

• $Has(X, \{m,n\}) \supset Has(X, m) \land Has(X, n)$

Encryption

• $Has(X, enc_{K}(m)) \land Has(X, K^{-1}) \supset Has(X, m)$

Encryption and signature

- ◆Public key encryption Honest(X) $\land \diamond$ Decrypt(Y, enc_x{m}) \supset X=Y
- ♦ Signature Honest(X) \land \bigcirc Verify(Y, sig_X{m}) \supset \exists m' (\bigcirc Send(X, m') \land Contains(m', sig_X{m}))

Sample inference rules

- ◆Preservation rules
 [actions]_P Has(X, t)
 [actions; action]_P Has(X, t)
- ◆Generic rules [actions]_p φ [actions]_p φ [actions]_p φ ∧ φ

Bidding conventions (motivation)

Blackwood response to 4NT

- 5 .: 0 or 4 aces
- -5•:1 ace
- -5•:2 aces
- -5. : 3 aces

♦Reasoning

• If my partner is following Blackwood, then if she bid 5♥, she must have 2 aces

Honesty rule(rule scheme) \forall roles R of Q. \forall initial segments $A \subseteq R$.Q |- [A]_X ϕ Q |- Honest(X) $\supset \phi$ • This is a finitary rule:
• Typical protocol has 2-3 roles
• Typical role has 1-3 receives
• Only need to consider A waiting to receive

Honesty rule (example use)

$$\forall$$
roles R of Q. \forall initial segments $A \subseteq R$.
 $Q \mid - [A]_X \varphi$
 $Q \mid - Honest(X) \supset \varphi$
• Example use:
 $\exists f Y \text{ receives a message from X, and}$
 $\exists Honest(X) \supset (Sent(X,m) \supset Received(X,m'))$

Correctness of CR - step 1

then Y can conclude

Honest(X) \supset Received(X,m'))

InitCR(A, X) = [new m; receive X, A, {x, sig_{X} {m, x, A}}; send A, X, sig_{A} {m, x, X}; RespCR(B) = [receive Y, B, {y, Y}; new n: send B, Y, {n, sig_B {y, n, Y}}; receive Y, B, sig_y {y, n, B}};

1. A reasons about it's own actions

 $CR \mid - [InitCR(A, B)]_A$

 \diamond Verify(A, sig_B {m, n, A})

Correctness of CR - step 2

InitCR(A, X) = [

1

send A, X, {m, A}; receive X, A, {x, sig_x{m, x, A}}; send A, X, $sig_{A}\{m, x, X\}\};$

RespCR(B) = [receive Y, B, {y, Y}; send B, Y, {n, sig_B{y, n, Y}}; receive Y, B, sig_y{y, n, B}};

2. Properties of signatures

 $CR \mid - [InitCR(A, B)]_A$ Honest(B) \supset \exists m' (\Diamond Send(B, m') \land Contains(m', sig_B {m, n, A})

Correctness of CR - Honesty

InitCR(A, X) = [

new m: send A, X, {m, A}; receive X, A, {x, sig_X {m, x, A}}; send A, X, sig_A {m, x, X}; RespCR(B) = [receive Y, B, {y, Y}; new n;

send B, Y, {n, sig_B {y, n, Y}}; receive Y, B, sig_y {y, n, B}};

Honesty invariant

CR |- Honest(X) ^ $\diamondsuit \mathsf{Send}(\mathsf{X},\mathsf{m}') \land \mathit{C}\mathsf{ontains}(\mathsf{m}',\mathsf{sig}_{\mathsf{x}}\left\{\mathsf{y},\mathsf{x},\mathsf{Y}\right\}) \land \neg \diamondsuit \mathsf{New}(\mathsf{X},\mathsf{y}) \supset$ $\mathsf{m}=\mathsf{X},\mathsf{Y},\{\mathsf{x},\mathsf{sig}_{\mathsf{B}}\!\{\mathsf{y},\mathsf{x},\mathsf{Y}\}\}\land \Diamond \mathsf{Receive}(\mathsf{X},\{\mathsf{Y},\mathsf{X},\{\mathsf{y},\mathsf{Y}\}\})$

Correctness of CR - step 4

InitCR(A, X) = [new m; send A, X, {m, A}; receive X, A, {x, sig_X{m, x, A}}; send A, X, sig_X{m, x, X};

RespCR(B) = [receive Y, B, {y, Y}; new n; send B, Y, {n, sig₈(y, n, Y}}; receive Y, B, sig_y{y, n, B}};

4. Use properties of nonces for temporal ordering

 $CR \mid - [InitCR(A, B)]_A$ Honest(B) \supset Auth

We have a proof. So what?

- Soundness Theorem:
 - if $Q \mid -\phi$ then $Q \mid = \phi$
 - If ϕ is a theorem then ϕ is a valid formula
- holds in any step in any run of protocol Q
 - Unbounded number of participants
 - Dolev-Yao intruder

Correctness of WCR - step 1

InitWCR(A, X) = [new m;

 $\begin{array}{l} {\rm send} \ A, X, \{m\}; \\ {\rm receive} \ X, \ A, \{x, sig_X[m, x]\}; \\ {\rm send} \ A, X, sig_A[m, x]\}; \end{array}$

RespWCR(B) = [receive Y, B, {y}; new n; send B, Y, {n, sig_B(y, n)}; receive Y, B, sig₃(y, n)};

1. A reasons about it's own actions

WCR |- [InitWCR(A, B)]_A \diamond Verify(A, sig_B {m, n})

Correctness of WCR - step 2

InitWCR(A, X) = [new m; send A, X, {m}; receive X, A, {x, sig_x{m, x}}; send A, X, sig_x{m, x}};

RespWCR(B) = [receive Y, B, {y}; new n; send B, Y, {n, sig_B(y, n}}; receive Y, B, sig_y(y, n}};

2. Properties of signatures

CR |- [InitCR(A, B)]_A Honest(B) ⊃ ∃ m' (\diamond Send(B, m') \land Contains(m', sig_B {m, n, A})

Correctness of WCR - Honesty

InitWCR(A, X) = [new m; send A, X, {m}; receive X, A, {x, sig_x{m, x}}; send A, X, sig_A{m, x}};

RespWCR(B) = [receive Y, B, {y}; new n; send B, Y, {n, sig_B{y, n}}; receive Y, B, sig_y{y, n}};

- Honesty invariant
 - CR |- Honest(X)
 - $\diamondsuit \mathsf{Send}(\mathsf{X},\mathsf{m}') \land \mathsf{Contains}(\mathsf{m}',\mathsf{sig}_{\mathsf{x}}\left\{\mathsf{y},\mathsf{x}\right\}) \land \neg \diamondsuit \mathsf{New}(\mathsf{X},\mathsf{y}) \supset$ $\mathsf{m}=\mathsf{X},\mathsf{Z},\{\mathsf{x},\mathsf{sig}_{\mathsf{B}}\{\mathsf{y},\mathsf{x}\}\}\land \Diamond \mathsf{Receive}(\mathsf{X},\{\mathsf{Z},\mathsf{X},\{\mathsf{y},\mathsf{Z}\}\})$

Correctness of WCR - step 3

InitWCR(A, X) = [new m; send A, X, {m}; receive X, A, {x, sig_x{m, x}};

send A, X, sig_A{m, x}};

RespWCR(B) = [new n; send B, Y, {n, sig_B{y, n}};
receive Y, B, sig_y{y, n}};

3. Use Honesty rule

WCR |- [InitWCR(A, B)] $_{A}$ Honest(B) \supset \diamond Receive(B, {Z,B,m}),

Result

- WCR does not have the strong authentication property for the initiator
- ♦ Counterexample
 - Intruder can forge senders and receivers identity in first two messages - A -→ X(B) m
 - X(C) -> B m

 - $-B \rightarrow X(C)$ n, sig_B(m, n) - $X(B) \rightarrow A$ n, $sig_B(m, n)$

Benchmarks

- Can prove authentication for CR
- Proof fails for WCR
- ◆Can prove repaired NSL protocol
- Proof fails for original NS protocol
- Proof fails for a variant of GDOI protocol (C. Meadows, D. Pavlovic)

Extensions

◆Add Diffie-Hellman primitive

- Can prove authentication and secrecy for key exchange protocols (STS, ISO-97898-3)
- Add symmetric encryption and hashing
 - Can prove authentication for ISO-9798-2, SKID3

Derivation system

Protocol derivation

- Build security protocols by combining parts from standard sub-protocols
- Proof of correctness
- Prove protocols correct using logic that follows steps of derivation
- Reuse proofs

Parallel protocol composition

- Assume that agents run both CR and NSL using same public/private keys
 Is authentication property preserved?
- Honesty rule is only protocol specific step in the proof sytem
 - Properties are preserved if the new protocol satisfies honesty invariants

Current work

- Formalize protocol refinements and transformations
- Automate proofs