Animation Curves and Splines 2

Animation Homework

- Set up - E.g. cu e/s h re lo sc sargirir e 2 n
- Specify some key frames (positions/orientation,
- Associate a time with each key frame
- Creat no an ar ne io is orth a at r 10 er en positions?
- Save the car 1 danin atic hs for later se
- Provide a o U.' ${ }^{\text {U }}$ of e an ple
- A crawling bug, a bouncing ball, etc...
- Use unity...

Bezier Curves

Bezier Curves

- Specify control points instead of derivatives

Bezier Curves

- A Bezier curve is defined by a set of control points P_{0}, \ldots, P_{n} where n determines the order of a Bezier curve
- Start from a linear Bezier curve based on two control points, and build recursively
A linear Bezier curve is a straight line

$$
\mathbf{P}_{\mathbf{P}_{\mathbf{0}}, \mathbf{P}_{\mathbf{1}}}(t)=(1-t) \mathbf{P}_{0}+t \mathbf{P}_{1}
$$

$$
t=0 \quad \circ P_{1}
$$

Bezier Curves

- A quadratic Bezier curve is determined by 3 control points $\mathrm{P}_{\mathbf{0}}, \mathrm{P}_{\mathbf{1}}, \mathrm{P}_{\mathbf{2}}$

$$
\mathbf{P}_{\mathbf{P}_{0}, \mathbf{P}_{1}, \mathbf{P}_{2}}(t)=(1-t) \mathbf{P}_{\mathbf{P}_{0}, \mathbf{P}_{1}}(t)+t \mathbf{P}_{\mathbf{P}_{1}, \mathbf{P}_{2}}(t)
$$

- $\mathbf{P}_{\mathbf{P}_{0}, \mathbf{P}_{1}, \mathbf{P}_{2}}(t)$ is linearly interpolated on the green line, and the endpoints of the green line lie on linear Bezier curves determined by $\mathrm{P}_{0}, \mathrm{P}_{1}$ and $\mathrm{P}_{1}, \mathrm{P}_{2}$
 respectively
- The basis functions are quadratic functions

$$
\mathbf{P}_{\mathbf{P}_{0}, \mathbf{P}_{1}, \mathbf{P}_{2}}(t)=(1-t)^{2} \mathbf{P}_{0}+2 t(1-t) \mathbf{P}_{1}+t^{2} \mathbf{P}_{2}
$$

Bezier Curves

- A cubic Bezier curve is determined by 4 control points

$$
\mathbf{P}_{\mathbf{P}_{0}, \mathbf{P}_{1}, \mathbf{P}_{2}, \mathbf{P}_{3}}(t)=(1-t) \mathbf{P}_{\mathbf{P}_{0}, \mathbf{P}_{1}, \mathbf{P}_{2}}(t)+t \mathbf{P}_{\mathbf{P}_{1}, \mathbf{P}_{2}, \mathbf{P}_{3}}(t)
$$

- $\mathbf{P}_{\mathbf{P}_{0}, \mathbf{P}_{1}, \mathbf{P}_{2}, \mathbf{P}_{3}}(t)$ is linearly interpolated on the blue line, and the path of the two end points of the blue line are quadratic Bezier curves determined by P_{0}, P_{1}, P_{2} and
 P_{1}, P_{2}, P_{3} respectively

The basis functions are cubic functions

$$
\mathbf{P}_{\mathbf{P}_{0}, \mathbf{P}_{1}, \mathbf{P}_{2}, \mathbf{P}_{\mathbf{3}}}(t)=(1-t)^{3} \mathbf{P}_{0}+3 t(1-t)^{2} \mathbf{P}_{1}+3 t^{2}(1-t) \mathbf{P}_{2}+t^{3} \mathbf{P}_{3}
$$

Bezier Curves

Higher order Bezier curves are defined recursively

$$
\mathbf{P}_{\mathbf{P}_{0}, \mathbf{P}_{1}, \ldots, \mathbf{P}_{\mathbf{n}}}(t)=(1-t) \mathbf{P}_{\mathbf{P}_{0}, \mathbf{P}_{1}, \ldots, \mathbf{P}_{\mathbf{n}-1}}(t)+t \mathbf{P}_{\mathbf{P}_{1}, \mathbf{P}_{2}, \ldots, \mathbf{P}_{\mathbf{n}}}(t)
$$

The basis functions of an $\mathbf{n}^{\text {th }}$ order Bezier curve are $\mathbf{n}^{\text {th }}$ order polynomials

$$
\mathbf{P}_{\mathbf{P}_{0}, \mathbf{P}_{\mathbf{1}}, \ldots, \mathbf{P}_{\mathbf{n}}}(t)=\sum_{i=0}^{n} B_{i}^{n}(t) \mathbf{P}_{i}
$$

where $B_{i}^{n}(t)=\binom{n}{i} t^{i}(1-t)^{n-i}$
High order Bezier curves are more expensive to evaluate When a complex shape is needed, low order Bezier curves (usually cubic) are connected together

Connecting Cubic Bezier Curves

- Want velocity to be continuous

Need co-linear control points across the junctions

\mathbf{C}^{0} Continuity for Bezier Curves

- Points are specified continuously
- But tangents are specified discontinuously

C¹ Continuity for Bezier Curves

- Tangents are specified continuously as well

Rotations

Rotation Interpolation

- Besides translation, the motion of a rigid object also includes rotation
- Consider an axis of rotation (out of the page) and angles of rotation α with respect to that axis

- Would like the object to smoothly change from one orientation to the other

Rotation Interpolation

Linear interpolation of Angles: $\alpha(t)=(1-t) \alpha_{0}+t \alpha_{1}$

- Need to be mindful of angle limits
- Not necessarily the shortest path
- Suppose we interpolate from $\alpha_{0}=1^{\circ}$ to $\alpha_{1}=359^{\circ}$
- This rotates almost a full circle, although the two angles are nearly the same

Recall: 2D Rotation Matrix

The columns of the matrix are the new locations of the x and y axes
$\left[\begin{array}{l}m_{x x} \\ m_{y x}\end{array}\right]=\left[\begin{array}{ll}m_{x x} & m_{x y} \\ m_{y x} & m_{y y}\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right]$

$$
\left[\begin{array}{l}
m_{x y} \\
m_{y y}
\end{array}\right]=\left[\begin{array}{ll}
m_{x x} & m_{x y} \\
m_{y x} & m_{y y}
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

So set the columns to the desired new locations of the x and y axes
$(-\sin \theta, \cos \theta) \mathrm{y}$

Euler Angles

- Euler angles:
- from the original axes (xyz)
- α : a rotation around the z-axis $\left(x^{\prime} y^{\prime} z^{\prime}\right)$
- β : a rotation around the N -axis ($x^{\prime \prime} y^{\prime \prime} z^{\prime \prime}$)
- γ : a rotation around the Z-axis (XYZ)
- Three angles are applied in this fixed sequence
- N-axis and Z-axis are both moving axes

- Interpolate rotation using Euler angles
- Could parameterize each of the angles: $\alpha(t), \beta(t), \gamma(t)$

Euler Angles

- Euler angles can lead to artifacts: gimbal lock

Question \#1

LONG FORM:

- Summarize how Euler Angles work, and explain gimbal lock.
- List 5 things you plan to do research on in order to learn more about designing your game (One sentence for each idea).

SHORT FORM

- Form clusters (of about size 5-ish?) with at least one novice gamer in each cluster.
Take turns answering questions that person might have, and otherwise giving him/her advice.
- Write down the best piece of advice you heard.

Quaternions

Quaternions

- Quaternions are an extension of complex numbers

$$
q=s+x i+y j+z k
$$

- The conjugate of a quaternion is defined as

$$
q^{*}=s-x i-y j-z k
$$

- They are added and subtracted (term by term) as usual.
- Multiplication is defined as follows: (using the table)

$$
\begin{aligned}
q_{1} q_{2}= & \left(s_{1} s_{2}-x_{1} x_{2}-y_{1} y_{2}-z_{1} z_{2}\right. \\
& s_{1} x_{2}+x_{1} s_{2}+y_{1} z_{2}-z_{1} y_{2} \\
& s_{1} y_{2}-x_{1} z_{2}+y_{1} s_{2}+z_{1} x_{2} \\
& \left.s_{1} z_{2}+x_{1} y_{2}-y_{1} x_{2}+z_{1} s_{2}\right)
\end{aligned}
$$

\mathbf{x}	$\mathbf{1}$	\boldsymbol{i}	\boldsymbol{j}	\boldsymbol{k}
$\mathbf{1}$	1	i	j	k
\boldsymbol{i}	i	-1	k	$-j$
\boldsymbol{j}	j	$-k$	-1	i
\boldsymbol{k}	k	j	$-i$	-1

Unit Quaternions as Rotations

- A quaternion can be expressed as a scalar/vector pair:

$$
q=(s, \vec{v}) \quad \text { where } \quad \vec{v}=(x, y, z)
$$

- A unit (length) quaternion can be obtained by dividing through all the elements by: $\|q\|=\sqrt{s^{2}+x^{2}+y^{2}+z^{2}}$
- Each unit quaternion corresponds to a rotation
- For a rotation around a 3D axis \hat{n} of angle θ, the corresponding unit quaternion is

$$
\left(\cos \frac{\theta}{2}, \sin \frac{\theta}{2} \hat{n}\right)
$$

- A quaternion multiplied by a nonzero scalar still corresponds to the same rotation (since normalization removes the scalar)

Unit Quaternions as Rotations

- A unit quaternion (s, x, y, z) is equivalent a rotation matrix:

$$
\left(\begin{array}{ccc}
1-2 y^{2}-2 z^{2} & 2 x y-2 s z & 2 x z+2 s y \\
2 x y+2 s z & 1-2 x^{2}-2 z^{2} & 2 y z-2 s x \\
2 x z-2 s y & 2 s x+2 y z & 1-2 x^{2}-2 y^{2}
\end{array}\right)
$$

- Rotating a vector by a unit quaternion is faster than using a rotation matrix (a vector can be viewed as a non-unit quaternion with the scalar part set equal to zero)

$$
\operatorname{Rotate}(\vec{u})=q \vec{u} q^{-1}
$$

- The inverse of a unit quaternion is simply its conjugate q^{*}
$\bullet\left(\right.$ The inverse of a non-unit quaternion is $q^{-1}=q^{*} /\|q\|^{2}$)

Interpolating Unit Quaternions

- Unit quaternions can be viewed as points lying on a 4-D unit sphere: (s, x, y, z)
- Interpolating between these points means tracing out a curve on the surface of this 4-D sphere
- This framework allows us to take the shortest path as represented by an arc on the 4D sphere

SLERP

- Spherical Linear Interpolation
- Linearly interpolate between points q_{0} and q_{1} on the unit sphere:

$$
q(t)=\frac{\sin (1-t) \varphi}{\sin \varphi} q_{0}+\frac{\sin t \varphi}{\sin \varphi} q_{1}
$$

- According to L'Hôpital's rule,

$$
\begin{aligned}
& \lim _{\varphi \rightarrow 0} \frac{\sin t \varphi}{\sin \varphi}=\lim _{\varphi \rightarrow 0} \frac{(\sin t \varphi)^{\prime}}{(\sin \varphi)^{\prime}}=\lim _{\varphi \rightarrow 0} \frac{t \cos t \varphi}{\cos \varphi}=t \\
& \lim _{\varphi \rightarrow 0} \frac{\sin (1-t) \varphi}{\sin \varphi}=\lim _{\varphi \rightarrow 0} \frac{(\sin (1-t) \varphi)^{\prime}}{(\sin \varphi)^{\prime}}=\lim _{\varphi \rightarrow 0} \frac{(1-t) \cos (1-t) \varphi}{\cos \varphi}=1-t
\end{aligned}
$$

-Therefore, as φ goes to zero, we get linear interpolation

$$
q(t)=(1-t) q_{0}+t q_{1}
$$

Angle Between Unit Quaternions

- The angle φ between two unit quaternions on a 4D sphere is calculated using:

$$
\varphi=\arccos \left(q_{0} \cdot q_{1}\right)
$$

with a typical dot-product: $q_{0} \cdot q_{1}=s_{0} s_{1}+x_{0} x_{1}+y_{0} y_{1}+z_{0} z_{1}$

- φ is guaranteed to be between $[0, \pi]$
- However, it still does not guarantee the shortest path, because q and $-q$ correspond to the same rotation!
- So, if $q_{0} \cdot q_{1}$ is negative, we negate either q_{0} or q_{1} before applying SLERP to guarantee the shortest path

SLERP for Unit Quaternions

- A quaternion $q=(s, \vec{v})$ can be defined in exponential form

$$
q=\|q\| e^{\hat{n} \alpha}=\|q\|(\cos \alpha+\hat{n} \sin \alpha)
$$

where α and the unit vector \hat{n} are defined via:

$$
s=\|q\| \cos \alpha, \quad \vec{v}=\hat{n}\|\vec{v}\|=\|q\| \hat{n} \sin \alpha
$$

- \hat{n} is the rotation axis, and α equals half of the rotation angle
- The power of a quaternion is then: $q^{t}=\|q\|^{t} e^{\hat{n} \alpha t}$
- Note that the power affects the rotation angle α, but not the rotation axis \hat{n}
- Finally, SLERP for unit quaternions is expressed as:

$$
\operatorname{SLERP}\left(q_{0}, q_{1} ; t\right)=q_{0}\left(q_{0}{ }^{-1} q_{1}\right)^{t}
$$

Question \#2

LONG FORM:

- Briefly explain why we use quaternions for rotations.
- Explain why moving rigid bodies use both a linear and an angular velocities.
- Answer the Short Form questions as well...

SHORT FORM

- Can you think of a particularly visually interesting rigid body used in games, movies, or television?
- Very briefly describe it.
- Explain how it makes use of translations and/or rotations for visual effects.

