
CS	248	
Interactive	Computer	Graphics

Instructor:	Ron	Fedkiw
Website:	cs248.stanford.edu

Meeting	Times:	Tuesday	and	Thursday,	
12:00pm	to	1:20pm



CS	148	vs.	CS	248

• Rendering	is	an	important	part	of	creating	a	video	game
• CS	148	focused	on	rendering
• CS	248	thus	will	not	deal	much	with	rendering
• Will	use	scanline	rendering	in	this	course
• Ray	tracing	is	too	slow	for	real-time	rendering	in	video	
games	--- but	can	be	used	to	generate	high-quality	
textures	for	the	scanline	renderer
• Albeit	real	time	ray	tracers	do	now	exist



CS	248:	Overview

•Goal:	Create	a	video	game!
• Combine	rendering	knowledge	from	CS	148	with	ideas	from	
the	rest of	computer	graphics	including
• (computational)	Geometry
• Animation
• Simulation

• CS	248	will	focus	on	making	things	move
• i.e.	Animation	and	Simulation	(along	with	the	necessary	
computational	geometry	to	make	this	happen)	



Geometry
• The	environment	in	which	a	
game	is	set	is	often	one	of	the	
most	compelling	components	
of	the	game
• An	immersive	world	makes	
the	game	both	engaging	and	
exciting
• Worlds	can	be	created	
manually	by	an	artist	and/or	
be	procedurally	generated	



Geometry

• Avatars	and	their	opponents	
represent	important	game	
geometry
• They	interact	with	the	world	
via	collisions,	etc.,	which	
require	computational	
geometry	algorithms	



Animation
• Animation	is	necessary	to	add	
motion	to	the	geometry
• Animated	by	an	artist
• Captured	from	a	performer	or	
puppeteer

• Simulated	with	equations/rules



Simulation
• Simulation	is	another	way	of	moving	the	
geometry	
• just	one	method	of	animation,	but	has	taken	
on	a	life	of	its	own

• Instead	of	specifying	positions/velocities	
explicitly,	physics	equations	(or	other	
rules)	are	solved	to	get	these	values
• Allows	more	interesting	interaction	with	
the	environment



CS	248	Outline	– Part	I
• Week	1	Introduction

• HW	#1	– Unity	game	engine	– 5%	of	final	grade
• Weeks	2	&	3	Animation	

• Basics,	Animation	Curves	and	Splines,	Etc.	– 5%	of	final	grade
• HW	#2	Animation	– 10%	of	final	grade

• Weeks	4	&	5	Simulation
• Particles	&	Particle	Systems	(cloth,	flocking,	etc.),	Rigid	Bodies	– 5%	of	
final	grade

• HW	#3	Simulation	- 10%	of	final	grade
• Weeks	6	&	7	Character	Animation/Simulation

• Characters	and	Articulated	Bodies,	Animation	and	Simulation	Thereof	–
5%	of	final	grade

• HW	#4	Character	Animation/Simulation	- 10%	of	final	grade
• (*)	You	may	work	with	a	partner.	Grading	will	consist	of	in	person	
live	demos	late	Monday	afternoons	with	the	CAs	(just	like	
CS148).	See	the	web	site	for	more	details.	



CS	248	Outline	– Part	I
• Week	1	Introduction

• HW	#1	– Unity	game	engine	– 5%	of	final	grade
• Weeks	2	&	3	Animation	

• Basics,	Animation	Curves	and	Splines,	Etc.	– 5%	of	final	grade
• HW	#2	Animation	– 10%	of	final	grade

• Weeks	4	&	5	Simulation
• Particles	&	Particle	Systems	(cloth,	flocking,	etc.),	Rigid	Bodies	– 5%	of	
final	grade

• HW	#3	Simulation	- 10%	of	final	grade
• Weeks	6	&	7	Character	Animation/Simulation

• Characters	and	Articulated	Bodies,	Animation	and	Simulation	Thereof	–
5%	of	final	grade

• HW	#4	Character	Animation/Simulation	- 10%	of	final	grade
• (*)	Short	or	Long	Form	Written	Assignments.	See	the	web	site	for	
more	details.		



Short	or Long	Form	
Written	Assignments

• The	goal	is	to	get	you	thinking	about	the	class	material,	and	
thinking	about	how	it	relates	to	your	game	early	on…
• 15%	of	the	grade	in	total
• Written	Assignments	for	9	of	the	lectures:

• Basics,	Animation	Curves	and	Splines,	Etc.	– lectures	3,	4,	5
• Particles	&	Particle	Systems,	Rigid	Bodies	– lectures	7,	8	,9		
• Characters	and	Articulated	Bodies – lectures	11,	12,	13

• Short	Form – I’ll	ask	some	questions	in	and	during	class.	Write	
down	brief	answers	on	a	piece	of	paper.	Turn	in	at	the	end	of	
class.	(Length	– short	– a	few	minutes of	writing.)
• Long	Form – Will	cover	the	Short	Form	questions.	But	will	also	
ask	for	some	detailed	discussions	related	to	the	lectures,	in	order	
to	ensure	the	synergy	between	the	lecture	itself	and	the	Short	
Form	questions.	(Length	– long	– a	couple	pages of	writing.)



Gaming	Platforms
• The	constraint	of	interactivity requires	one	to	put	extensive	effort	into	
the	platform	chosen	for	the	implementation	of	the	game
• Multithreaded	PC	Games

• Make	use	of	all	available	resources	on	the	PC	including	both	the	CPU	and	the	GPU,	make	
use	of	all	cores	on	the	CPU	using	multithreaded parallelism

• Very	high	end	graphics
• Mobile	Games

• Often	simpler	than	PC	games	due	to	the	limited	computing	resources	available,	very	
different	style	of	user	input	and	interactivity,	using	sensors on	the	device	is	a	must

• 2D games	making	use	of	sensors	and	touch	screens
• Client/Server/Browser	Games

• Communicate	between	multiple	computers	and	browsers,	the	browser	has	many	tools	to	
aid	in	multiplayer communication,	many	networking	challenges

• E.g.	racing	games,	mmos,	etc.
• Console	Games

• Xbox	One,	PS4,	Wii	U
• Very	specialized	and	standardized computing	environments
• allows	for	mass	production	of	very	low	cost	machines(consoles)	with	optimal	resources
• the	game	designer	can	make	many	assumptions	ignoring	any	hardware	variations	in	

order	to	optimize	the	game	and	gameplay



Platform:	Multithreaded	PC
• Multi-core	CPUs	are	the	norm	for	today’s	computers.		Any	game	produced	today	will	be	released	in	a	

market	dominated	by	multi-core	processors.	N.B.	both	PS4	and	Xbox	One	look	like	a	PC!

• Work	can	be	divided	into	multiple	tasks	which	are	subsequently	distributed	among	multiple	threads
• Functional	Decomposition:	Different	threads	dedicated	to	physics,	sound,	rendering,	networking,	AI,	GUI,	etc.
• Data	Decomposition:	Further	increases	the	concurrency	of	each	function	subsystem

• PCs	have	much	more	powerful	computing	resources	(CPU	and	GPU)	compared	to	other	platforms	
allowing	PC	games	to	be	much	more	complex	and	realistic

• Your	game	should	be	visually/technically	impressive,	use	threads,	and	be	3D

• There	are	many	tools	for	implementing	threading,	such	as	POSIX	Threads	(Pthreads),	Native	Win32	
Threads,	OpenMP,	OpenCL,	IntelTBB,	etc.	



Platform:	Mobile	Devices
• More	opportunities	for	user	interaction	
compared	to	a	PC	game
• Touch	screen:	Allows	for	flexible	tactile	input	and	

feedback
• Multiple	sensors:	accelerometer,	gyroscope,	

magnetometer,	etc.
• Cameras:	Interact	with	and	use	information	from	

the	real-world
• Often	rely	more	on	immersive	gameplay	than	
superior	graphics
• Simpler	game	scenes	(typically	2D	instead	of	3D)
• Less	computing	power	compared	to	a	PC	
• Fast	simulation	models	(e.g.	shape	matching	for	

deformable	body,	SPH	for	fluid.	Conventional	
simulation	models	on	the	PC	are	too	expensive	for	
mobile)

• OpenGL	ES	standard	is	a	subset	of	OpenGL
• Your	game	should	make	use	of	the	special	
interactive	and	sensor	driven	features	of	the	
mobile	device	(tablets	are	preferable),	and	can	
be	2D	



2D	Games
• 2D	games	are	allowed	under	certain	circumstances,	since	
rendering	is	not	the	focus	of	this	course
• Need	to	do	a	very	good	job	incorporating	the	topics	covered	
in	this	course	(computational	geometry,	animation,	and	
simulation)	into	the	game
• 2D	games	are	not	allowed	for	the	“Threaded	PC”	option,	
since	the	whole	point	of	the	PC	is	to	showcase	
computational	power
• For	“Mobile”,	we	strongly	recommend	(prefer)	2D	in	order	
to	lighten	the	load	on	rendering	and	stress	other	aspects	of	
the	game



Platform:	Client/Server/Browser

• Client-Server	Model
• Server	maintains	connections	with	each	of	the	clients
• Clients	do	not	communicate	with	each	other,	but	can	
only	communicate	indirectly	through	the	server

• Peer-to-Peer	Model
• Peers	are	coequal	nodes
• Communication	does	not	rely	on	a	server
• Decentralized	system

• Browsers	have	lots	of	tools	useful	for	
implementing	client/server	or	peer-to-peer	games

• Running	a	browser	game	alone	on	a	PC	is	not	an	
efficient	use	of	resources.	All	browser	games	
should	be	either	client/server	or	peer	to	peer.	They	
can	be	2D.



Platform:	Client/Server/Browser
• Advantages:	Cross-platform	and	
convenient
• Can	play	a	game	as	long	as	you	have	
access	to	a	browser,	no	need	to	download	
any	client	program

• Do	not	need	to	deal	with	the	underlying	
operating	system,	just	the	browser	itself

• The	ability	to	communicate	with	a	server	
or	other	players	makes	browser	games	
versatile

• Disadvantages
• Gaming	experience	is	often	limited	in	
scope

• Programming	within	a	browser	has	its	
own	unique	challenges



Platform:	Client/Server/Browser	
• Large	number	of	technologies	available

• Adobe	Flash:	Well	established,	but	gradually	being	replaced	by	others
• HTML	5:	Open	standard,	well	supported	by	the	majority	of	browsers,	
performance	tends	to	be	lacking	(especially	in	3D)

• WebGL:
• Based	on	OpenGL	ES
• Hardware	acceleration:	Can	handle	complex	3D	scenes
• Several	libraries	build	on	top	of	WebGL making	it	easier	to	navigate

• Communication	Paradigms
• WebSocket

• Designed	to	be	implemented	in web	browsers and servers	over	TCP
• Programmed	using	Go	(recommended),	Lua,	Haskell,	etc.

• Ajax	(Asynchronous	JavaScript	and	XML)
• Load	content	with	JavaScript	asynchronously
• Communicate	without	waiting	



Unity	Game	Engine
• We	will	use	the	Unity	game	engine	throughout	the	course

• This	includes	some	of	the	homework	assignments
• Thus	it	is	very	important	that	you	do	not	miss	the	lectures	
dedicated	to	getting	you	up	to	speed	on	the	Unity	Engine!
• Contact	the	CAs	via	email	or	see	the	web	site	to	set	up	your	free	
license

• This	Thursday’s	lecture	(Jan	12)	will	be	a	Unity	boot-camp	to	
get	you	started
• Then	every	2	weeks	after	that,	Thursday’s	lecture	will	be	
dedicated	to	the	Unity	engine:	
• Animation	(Jan	26),	Simulation	(Feb	9),	Character	
Animation/Simulation	(Feb	23)			



Homework	1
• Due	Monday	the	16th

• Live	Demo	with	the	CAs
• Install	the	Unity	Engine,	set	up	a	scene/level,	and	demo	it	to	
the	CAs
• import	some	simple	or	interesting	geometry
• set	up	a	camera,	set	up	lighting,	add	textures	to	your	geometry
• see	the	web	site	for	more	details

• We	will	get	you	started	via	the	lecture	on	Thursday
• 5%	of	the	final	grade
• You	may	work	with	a	partner



Game	Design
• 50%	of	your	final	grade	is	directly	related	to	your	game
• You	may	work	in	teams	of	1	to	4	people
• We	strongly	encourage	you	to	use	the	Unity	Engine

• since	we	will	have	spent	4	lectures	teaching	you	how	to	use	it	for	your	
first	four	homework	assignments

• and	we	will	give	you	sample	game(s)/code	working	in	the	engine
• The	game	must	draw	heavily	on	the	concepts	discussed	in	the	
course	(talk	to	the	instructor	or	CAs	if	you	need	clarification)		
• The	last	3	weeks	of	lecture	are	dedicated	to	game	development	
• Week	8:	Game	Design,	Interactivity,	and	AI

• Tuesday	February	28	and	Thursday	March	2	– typically	gaming	industry	
guest	lectures	– attendance is	required	and	worth	5%	of	your	grade

• HW	5:	hand	in	a	list	of	your	team	and	a	description	of	your	proposed	
game	- 5%	of	final	grade

• Week	9:	CAs	will	demo	the	2D/3D	games	that	they	created,	and	
provide	source	code	



Game	Demos
• The	completed	games	will	be	live-demoed	during	the	
regular	final	exam	time	slot	for	the	course,	and	will	be	30%	
of	your	grade
• Each	person	will	independently	submit	a	1	page	write-up	detailing	
what	they	did	for	the	game	both	individually	and	in	collaboration	
with	others

• You	will	also	be	required	to	give	a	live	in-class demo	of	what	
you	have	so	far	during	the	last	week	of	classes
• Tuesday	March	14	or	Thursday	March	16
• This	counts	as	10%	of	your	grade

*	The	final	exam	slot	is	typically	used	for	a	game	competition.	
More	details	later…


