CS248 Lecture 14

CHARACTER ANIMATION AND PHYSICS

Zhenglin Geng February 15th, 2018

Overview

- Basics on character animation
- Articulated rigid bodies
- Inverse kinematics

Basics on Character Animation

3D Animation

Battlefield 3 Animation (Upright, Crouch, Prone)

3D Animation

Battlefield 4 Animation (Running)

Prepare your own character

Modeling

Rigging

Skinning

Retargeting

Prepare your own character

Modeling

- Sensible topology
- T-Pose

Rigging

- HIPS spine chest shoulders - arm forearm - hand
- HIPS spine chest neck - head
- HIPS UpLeg Leg foot - toe - toe_end

Skinning

- Use an automated process initially
- Incrementally editing and refining

Animating Characters

Animation from external sources

- Mocap
- 3DS Max, Maya or Blender
- Unity's asset store
- Multiple clips cut and sliced from a single imported timeline.

Animation created and edited within Unity

Position, rotation and scale of GameObjects
 Use standard format FBX

Length 0.990			30 FP
0:00	5:00	10:00	
Start 215.2		End	244.9
Loop Time			
Loop Pose		loop	match 🤇
Cycle Offset	0.86		
Root Transform Ro	otation	t. =0	
	IK 20	24 EQ	•
	_	_	-
	_		
	R		
).	

Using Humanoid Characters

How to obtain humanoid models

- Procedural character modeling or character generator such as *Poser*, *MakeHuman* or *Mixamo*
- Unity assets store
- Build from scratch

Importing Models

Model

 3D Model, such as a character, a building or a piece of furniture

de	ExampleFBX Import	Settings	[🗿 🔅,
79			Open
	Model	Rig Animation Materials	
Mes	hes		
Scale	e Factor	1	
Use	File Scale		
Fi	ile Scale	1	
Mes	h Compression	Off	\$
Read	/Write Enabled		
Opti	mize Mesh		
Impo	ort BlendShapes		
Gen	erate Colliders		
Keep	Quads		
Inde	x Format	16 bit	\$
Weld	Vertices		
Impo	ort Visibility		
Impo	ort Cameras		
Impo	ort Lights		
Pres	erve Hierarchy		
Swap	o UVs		
Gen	erate Lightmap UVs		
Nori	mals & Tangents		
Norr	mals	Import	+
Norr	mals Mode	Unweighted Legacy	+
Smo	othing Angle	0	0
Tang	gents	Calculate Tangent Space	\$
		Revert	Apply

Importing Models

Rig

- Animation type:
 - > None
 - > Legacy
 - > Generic
 - > Humanoid

45	ExampleFBX In	nport Settings			Open
	Model	Rig Animatio	on Mat	erials	
Anima	ation Type	None			\$
				Revert	Apply
46	ExampleFBX In	nport Settings			🛐 🎝
	Model	Rig Animatio	on Mat	erials	
Anima	ation Type	Generic			+
Avata	r Definition	Create From Th	is Model		+
Root	node	None			\$
Optim	nize Game Objec	ts			
				Revert	Apply
O Insp	pector		<u></u>		
1	Dude Import	Settings	🛐 🌣, Open)	
N	lodel	Rig Anim	ations		
Animat	ion Type	Humanoid	+)	
Avatar	Definition	Create From Th	s Model ‡ nfigure)	
Optimi	ze Game Object	:			
		Revert	Apply)	

Importing Models

Animation

Animation clips

Adam Import Setting	JS 🛐 🌣 Open
Model R	tig Animation Materials
Import Animation	
Bake Animations	
Anim. Compression	Optimal \$
Rotation Error	0.5
Position Error	0.5
Scale Error	0.5
Rotation error is defined as max is defined as maximum distance	cimum angle deviation allowed in degrees, for others it e/delta deviation allowed in percents
Animated Custom Propertie	2
Clips	Start End
Take 001	0.0 100.0
	+ -

Demo

Review

Prepare your character animation

- > Modeling, rigging, skinning
- > Retargeting
- > Obtain humanoid models: Poser, MakeHuman, Mixamo
- > Animating characters
- > Working with FBX

Animator Controllers

- Animator Controller
 - arrange and maintain a set of Animation Clips and associated Animation Transitions for a character or object
- Animation State Machine
 - a flow-chart of Animation Clips and Transitions
- **States** (animation clips)
- State transition

Animation States

- Animation state
 - An individual animation sequence (or blend tree) which will play while the character is in that state
- Default state
 - The state that the machine will be in when it is first activated
- Any state
 - Can be used to go to a specific state regardless of which state you are currently in
 - Cannot be the end point of a transition

ase Layer		Auto Live Li
	Any State	
	Entry	Idle

Inspector			∂ •≡
Grounded			۵,
Tag 📃			
Speed	1		
Motion	- Blend Tree		0
Foot IK	\checkmark		
Write Defaults	\checkmark		
Mirror			
Transitions		Solo	Mute
= Grounded -> Cro	uching		
= Grounded -> Airb	orne		
			-

Animation Transitions

- Animation transition
 - Switch or blend from one animation state to another
 - How to blend between states
 - Under what conditions they should activate (parameters)
- Transition properties
 - Exit time: the exact time at which the transition can take effect
 - Interruption source: control the circumstances under which this transition may be interrupted. Read <u>this document</u> for more details.
- Transition graph
 - Duration in/out
 - Transition offset

New State -> New State 0		
		 -
▼		\$,
New State -> New State	State 0	
Has Exit Time	\checkmark	
Settings		
Exit Time	0.9	
Fixed Duration		
Transition Duration (s)	0.1	
Transition Offset	0	
Interruption Source	None	\$
Ordered Interruption		
A		
Cannot preview transitio	on: source state does not have motion	

Animation Parameters

- Animation Parameters
 - Variables that can be accessed and assigned from scripts
 - Used to control or affect the flow of the state machine
- Types:
 - Int
 - Float
 - Bool
 - Trigger

🐉 Animator	
Layers Parameters	9
QTName	
= Forward	0.0
= Strafe	0.0
= Fire	
= Die	\bigcirc
_ Die	0

Demo

Review

Animation basics

- > Animator
- > Animator controller
- > Animation state
- > Animation transition
- > Animation parameter

Splitting Animation Clips

- Models with unsplit animations
 - Walk animation 1-33
 - Run animation 41-57
 - Kick animation 81-97

Sk8BoyA	(nimFB)	X Impo	ort Settir	nç 🛐 🏞 Open	
Model	Ri	g	Animat	tions	
Import Animation 🗹					
Bake Animations					
Anim. Compress	ion [Keyfram	ne Reducti	on ‡	
Rotation Error		0.5			
Position Error		0.5			
Scale Error		0.5			
Rotation error is d allowed in degrees maximum distance percents	efined as , for oth /delta de	s maxim ers it is eviation	um angle defined a allowed in	deviation s n	
Clips			Start	End	
Take 001			0.0	470.0	
				+ -	

Looping Animation Clips

- Loops can base on:
 - Pose
 - Rotation
 - Position

idleGrab	in 4,
Length 59.167	30 FPS
30:	00
Start 143	End 331
Loop Pose	loop match 🔴
moun	Comment.
Root Transform Rotation	
Bake into Pose	loop match 🔘
Root Transform Position	(Y)
Bake into Pose 📃	loop match 🔘
Root Transform Position	(XZ)
Bake into Pose	loop match 🔘
mmmm	provenue and a second s

Root motion

- Root motion
 - Body transform
 - Root transform (XZ plane)
- For animations comes as "in-place"
 - Create a curve
 - Create a parameter
 - Control by script
 - "Handle by script"


```
public class RootMotionScript : MonoBehaviour
{
    void OnAnimatorMove()
    {
        Animator animator = GetComponent<Animator>();
        if (animator)
        {
            Vector3 newPosition = transform.position;
            newPosition.z += animator.GetFloat("Runspeed") * Time.deltaTime;
            transform.position = newPosition;
        }
    }
}
```

Demo

Review

- Splitting animations
- Looping animations
 - > Pose
 - > Rotation
 - > Position
- Root motion
 - > Create a curve
 - > Control by script

Blend Trees

- Blend trees
 - Allow multiple animations to be blended smoothly
 - A special type of state of Animation State Machine
- Transitions
 - Transition from one animation state to another
 - Usually very quick
- Using blend trees
 - Create state > From New Blend Tree
 - Add animation clips using '+' under motion

1D Blending

- Blend types
 - 1D
 - 2D
 - Direct blending
- Blending parameter
 - Animation parameter

O Ins	pector				a ≡
	Blend Tree				2 🔅
	Blend Type	10)		ŧ
Parame	eter	D	irection		\$
	\succ				
-1			_		1
Motio	n		Thresl		1
= 🖬 P	RunLeft	ο	-1	1	
= 🖬 P	lun	ο	0	1	
= 🖬 R	RunRiaht	ο	1	1	
				+,	-
Autom	ate Thresholds	s 🗌			
Compu	ite Thresholds	Se	lect		\$
Adjust	Time Scale	Se	lect		\$

Demo

Avatar

- Avatar
 - Mapping between simplified bone structure understood by Unity and the actual bones present in the skeleton
 - Allow for retargeting and inverse kinematics

Configuring the Avatar

- Automatic avatar configuration
 - Manual inspection is always recommended
 - Needs to have similar bone structure (rigging)
 - Needs to be T-pose (modeling)

Muscle Setup

- Muscle
 - Control range of motion of different bones
 - Prevent visual artifacts and self-overlaps
- Muscle group preview
- Per-Muscle Settings

Мар	ping Muscles & Sett	ings
Preview	Muscle Group Preview	
Reset All	Reset All Preview Values Open Close Left Right Roll Left Right In Out Boll In Out	
	Finger Open Close Finger In Out	
Preview	Per-Muscle Settings	
	 Body Head Left Arm Left Fingers Right Arm Shoulder Down-Up Shoulder Front-Back Arm Down-Up Arm Front-Back Arm Twist In-Out Forearm Stretch Forearm Stretch Forearm Twist In-Out Hand Down-Up Hand In-Out Right Fingers Left Leg Right Leg 	
	Additional Settings	
	Upper Arm Twist Lower Arm Twist Upper Leg Twist Lower Leg Twist Arm Stretch Leg Stretch Feet Spacing Translation DoF	0.5 0.5 0.5 0.5 0.05 0.05 0
Muscles *		
	Revert Apply	Done

Demo

Review

Blend trees

- > Blend trees vs transitions
- > Creating blend trees
- > Blending parameters
- > Blend types: 1D, 2D, Direct

Avatar

- > Mapping, allow for retargeting and inverse kinematics
- > Configuring the avatar
- > Muscle: control range of motion

Articulated Rigid Bodies

Fixed Joint

- Restrict an object's movement to be dependent on another object
- Fixed joint vs parenting
 - Implemented through physics rather than transform hierarchy
 - Can break apart

🔻 🎺 🛛 Fixed Joint	🛐 🌣,
Connected Body	None (Rigidbody) O
Break Force	Infinity
Break Torque	Infinity
Enable Collision	
Enable Preprocessing	\checkmark

Spring Joint

- Connect two rigid bodies through a spring
- Anchor
 - Point in object's local space at which the joint is attached
- Connected anchor
 - Point in the connected object's local space at which the joint is attached
- Auto configure connected
- Spring
- Damper

Spring Joint Connected Body	None (Rigidbody) ⊙
Anchor	
X 0 Y 0	Z 0
Auto Configure Conn	
Connected Anchor	
X 0 Y 0	Z 0
Spring	10
Damper	0.2
Min Distance	0
Max Distance	0
Tolerance	0.025
Break Force	Infinity
Break Torque	Infinity
Enable Collision	
Enable Preprocessing	

Configurable joint

- Customizable joint, 4 sections
 - Position and rotation configuration
 - Limit and limit springs
 - Target and drive forces
 - Projection

Connected Body	N	one (Rio	idho	dv)				-	0
Anchor	X	0		Y	0.5		7	0		-
Axis	x	1	-	Ŷ	0		Z	0		
Auto Configure Connect	×	-		1	•					
Connected Anchor	X	0		Y	0		z	0		
Secondary Axis	х	0	_	Y	1	_	z	0	_	-
X Motion	E	ree						_		4
Y Motion	F	ree								٥
Z Motion	E	ree								٠
Angular X Motion	F	ree	_			_		_	_	٥
Angular Y Motion	E	ree								
Angular Z Motion	E	ree								0
🖲 Linear Limit Spring										
Spring	0									
Damper	0									
♥ Linear Limit										
Limit	0			_			_			_
Bounciness	0									
Contact Distance	0									
Angular X Limit Spring	-			ļ						
Spring	0			ļ						
Damper V Low Angular X Line 1	0									
+ Low Angular X Limit	C									
Eimit	0									
Contact Distance	010									
b High Angular X Limit	0									
Frigh Angular A Limit & Angular V7 Limit Spring										
Soring	0			-			-			-
Damper	0			-		-	-	-		-
V Angular Y Limit										
Limit	0		-	-		-	-	-	-	-
Bounciness	0			-		-	-	-		-
Contact Distance	0		-	-		-	-	-	-	-
► Angular Z Limit										
Target Position	х	0		Y	0	_	z	0	_	-
Target Velocity	х	0	-	Y	0	_	z	0		-
♥ X Drive										
Mode		isabled								
Position Spring	0									
Position Damper	0			_			_			_
Maximum Force	3	.402823	e+38	8						
▶ Y Drive										
▶ Z Drive										
Target Rotation										
Target Angular Velocity	X	0		Y	0		Z	0		
Rotation Drive Mode	Ľ	and YZ		í			í			
Angular X Drive				1						
Mode	L	isabled	-		-					
Position Spring	0									
Position Damper	0	403077								
Maximum Force	3	.402823	e+38	5						
F Angular YZ Drive										
* Sterp Drive	-	line block		ļ						
Position Series	Le la	reatined			-					-
Position Damos	LC C									
Maximum Eorce	2	402823	0+74							
Projection Mode	F		e+30							
Projection Distance	le	1		f	_					-
Projection Angle	1	80		i						
Configured In World Sna	,	1								
Swap Bodies	Ē	1								
Break Force	Ē	finity								
Break Torque	F	finity		í						
	- 12									
Enable Collision	E									
Enable Collision Enable Preprocessing)								

Configurable joint (1)

- Anchor
- Connected anchor
- To define local coordinate frame of the joint
 - Axis
 - Secondary axis
- X,Y,Z Motion
 - Free, locked, limited
- Angular X,Y,Z Motion
 - Free, locked, limited

🔻 家 🛛 Configurable Joir	ıt						💽 ¢,
Connected Body	None (Rigidbody)						
Anchor	х	0	Y	0.5	Z	0	
Axis	х	1	Y	0	Z	0	
Auto Configure Connect	e 💽	8					
Connected Anchor	х	0	Y	0	Z	0	
Secondary Axis	х	0	Y	1	z	0	
X Motion	E	ree					•
Y Motion	E	ree					•
Z Motion	Free						+
Angular X Motion	Free						:
Angular Y Motion	Free					•	
Angular Z Motion	E	ree					8

Configurable joint (2)

- Linear limit spring
 - Spring force applied to pull object back when it goes past the limit position
- Linear limit
 - Limit
 - Distance in world units
 - Bounciness
 - Bounce force applied to push is back when it reaches the limit distance
 - > Contact distance
 - Tolerance
- Angular X
 - > Limit spring, low limit, high limit
- Angular YZ
 - > Limit spring, low limit, high limit

V Linear Limit Spring	
Spring	0
Damper	0
Limit	0
Bounciness	0
Contact Distance	0
T Angular X Limit Spring	
Spring	0
Damper	0
T Low Angular X Limit	
Limit	0
Bounciness	0
Contact Distance	0
▶ High Angular X Limit	
TAngular YZ Limit Spring	1
Spring	0
Damper	0
V Angular Y Limit	
Limit	0
Bounciness	0
Contact Distance	0
► Angular Z Limit	

Configurable joint (3)

- Target position / velocity
 - Desired position / velocity
- X Drive
 - Drive force that moved toward target position/velocity along local X axis
 - Mode: disabled, position, velocity or both
 - Position spring, damper
 - Maximum force
- Y Drive, Z Drive
- Target rotation / angular velocity
- Angular X Drive
- Angular YZ Drive
- Slerp drive

Target Position	х	0	Y	0	Z	0	
Target Velocity	х	0	Y	0	z	0	
∀ X Drive							
Mode		isabled					
Position Spring	0						
Position Damper	0						
Maximum Force	3	.402823	3e+38				
▶ Y Drive							
▶ Z Drive							
▶ Target Rotation							
Target Angular Velocity	х	0	Y	0	z	0	
Rotation Drive Mode		and YZ					8
Mode		isabled					٥
Position Spring	0						
Position Damper	0						
Maximum Force	3	.402823	3e+38				
► Angular YZ Drive							
Mode		isabled					٥
Position Spring	0						
Position Damper	0						
Maximum Force	3	402823	20+38				

Configurable joint (4)

- Projection mode
 - (snap back when constraints unexpectedly violate)
 - None
 - Position and rotation
- Projection distance / angle
 - The distance/angle the joint must move beyond its constraints before the physics engine will attempt to snap it back to an acceptable position/rotation
- Configured in world space
- Swap bodies

Projection Mode	None	4
Projection Distance	0.1	
Projection Angle	180	
Configured In World Sp	ac	
Swap Bodies		
Break Force	Infinity	
Break Torque	Infinity	
Enable Collision		
Enable Preprocessing		

Apply forces and torques

- Checkout Rigidbody class
 - public void **AddForce**(Vector3 force, ForceMode mode = ForceMode.Force)
 - public void **AddRelativeForce**(Vector3 force, ForceMode mode = ForceMode.Force)
 - public void AddForceAtPosition(Vector3 force, Vector3 position, ForceMode mode = ForceMode.Force)

Stanford University

• public void **AddTorque**(Vector3 torque, ForceMode mode = ForceMode.Force)

Demo

Inverse Kinematics

Inverse Kinematics (Review)

- Joints
 - Position: p_i
 - Angle: θ_i
- Lengths
 - *l*_i
- End effector
 - S
- Coordinate frames
 - $\binom{W}{X}, \frac{W}{Y}, \frac{W}{Z}, \binom{i}{X}, \frac{i}{Y}, \frac{i}{Z}$
 - Where are the z-axis? (0,0,1)
 - What is the coordinate of the end effector in frame 2? $(l_2, 0, 0)$
 - What is the coordinate of p_i in frame i-1? (l_{i-1} , 0,0)

Inverse Kinematics (Review)

- Forward kinematics
 - Specify the base position/joint along with the other joint angles to prescribe motion
 - Given l_i, θ_i , find p_i, s
- Inverse kinematics
 - Given the values for the end effectors in world space, compute the joint angles
- Jacobian iterative method
 - $s = F(\mathbf{\theta})$
 - $\mathbf{J} = \frac{\partial s}{\partial \mathbf{\theta}}$
 - $s s_{target} \approx J(\theta \theta_{target})$ (Taylor expansion)
 - Given s, s_{target} , θ , find θ_{target} , iteratively
 - $s \in \mathbb{R}^n, \theta \in \mathbb{R}^m$, what is the dimension of **J**? $n \times m$

Inverse Kinematics (Review)

- While $|s s_t| < thresh$
 - Compute J
 - $\delta s = s_t s$
 - Solve $\mathbf{J}\delta\mathbf{\Theta} = \delta s$ to find $\delta\mathbf{\Theta}$
 - Update with a small step α : $\theta += \alpha \delta \theta$
 - Update end effectors $s = F(\theta)$

Coordinate Frames

- Coordinate transfer (from frame 2 to frame 1)
 - ${}^{1}p = {}^{1}_{2}R {}^{2}p + {}^{1}_{2}t$
 - ^{1}p is p in frame 1, $\frac{1}{2}R$ is the matrix rotating coordinates from frame 2 to frame 1, $\frac{1}{2}t$ is the translation vector from frame 1 to frame 2
- Homogenous coordinate and transformation matrix
 - ${}^{1}P = \begin{bmatrix} {}^{1}p \\ 1 \end{bmatrix}, {}^{1}2T = \begin{bmatrix} {}^{1}R & {}^{1}t \\ 0 & 1 \end{bmatrix}$
 - ${}^1P = {}^1_2T {}^2P$

• ¹*P* is homogenous representation of ${}^{1}p$, ${}^{1}T$ is matrix transforming coordinates from frame 2 to frame 1

• Multiple coordinate frames:

•
$${}^{W}P = {}^{W}_{0}T \left({}^{0}_{1}T \left({}^{1}_{2}T {}^{2}P \right) \right) = {}^{W}_{\infty}T {}^{\infty}_{\infty}T {}^{\infty}P = {}^{W}_{2}T {}^{2}P$$
 (commutativity)

• Origin of the ith coordinate frame in world space

•
$${}^{W}P_{i} = {}^{W}_{0}T \left({}^{0}_{1}T \left({}^{1}_{2}T {}^{2}P \right) \right) = {}^{W}_{i}T \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix}$$
, (last column of transformation matrix)
• $p_{i} = \begin{bmatrix} {}^{W}_{i}T_{14}, {}^{W}_{i}T_{24}, {}^{W}_{i}T_{24} \end{bmatrix}^{T}$

Forward Kinematics

• Calculate
$${}_{0}^{W}T$$

• ${}_{0}^{W}T = \begin{bmatrix} \cos\theta_{0} & -\sin\theta_{0} & 0 & 0\\ \sin\theta_{0} & \cos\theta_{0} & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$
• Calculate ${}_{i}^{W}T$, for $i = 1, ..., m - 1$
• ${}_{i}^{i-1}T = \begin{bmatrix} \cos\theta_{i} & -\sin\theta_{i} & 0 & l_{i-1}\\ \sin\theta_{i} & \cos\theta_{i} & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$
• ${}_{i}^{W}T = {}_{i-1}^{W}T^{i-1}{}_{i}^{i}T$

Calculate end effector in world frame

•
$$s = {}_{m-1}^{W}T \begin{bmatrix} l_{m-1} \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Jacobian Calculation

•
$$\mathbf{J}_i = v_i \times (s - p_i)$$

Jacobian Calculation

• p_i is the first three entries in the last column of ${}^W_i T$

•
$$\mathbf{J}_i = v_i \times (s - p_i)$$

Eigen

- Matrix and Vector types
 - Eigen::Matrix4d T; Eigen::Vector3d v;
- Matrix access and assignment
 J(i,j)=0.;
- Initializing matrix
 - T << cosi, -sini, 0, 0, sini, cosi, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1;
- Get block matrix: block(i,j,h,w)

Eigen::Vector3d pi = T.block(0, 3, 3, 1);

• Matrix column and cross product

```
J.col(i) = v.cross(s - pi);
```

Visual Studio Problems

- SAFESEH problem
 - Project Properties -> Linker -> Advanced -> Image Has Safe Exception Handlers, turn off
- Glut32.dll not found
 - Copy glut32.dll from lib to the directory that has .sln file

Review

- Basics on character animation
 - Prepare your model: modeling, rigging, skinning, (retargeting)
 - Obtain your model: Mixamo, unity assets store
 - Import models: use FBX
 - Animator, animator controllers, animation state machine, animation states, animation transitions, animation parameters
- Advanced materials on character animation
 - Splitting animation clips, looping animation clips, root motion
 - Blend trees, 1D blending, blending parameters
 - Avatar, avatar configuration, muscles
- Articulated rigid bodies
 - Fixed joint, spring joint
 - Configurable joint: limits and limit springs, targets and drive forces, projection
- Inverse kinematics
 - Forward kinematics, Jacobian calculation, Eigen