A General Perspective on
Graph Neural Networks




Modern ML Toolbox
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Relational Deep Learning
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Relational data is a graph!
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But networks are far more complex!

Arbitrary size and complex topological structure (i.e.,
no spatial locality like grids)

Text

Networks Images

No fixed node ordering or reference point
Often dynamic and have multimodal features



Graph Neural Networks




A Naive Approach

Join adjacency matrix and features
Feed them into a deep neural net:

hidden layer 1  hidden laver 2  hidden layer 3

A B C D E Feat
A(01110 10\
B 1 0 0 1 1 0 0 ?
c 1 0 0 1 O 0 1 u
D 11 1 0 1 1 1
EL o010 10 1 0 )

Issues with this idea:
O(|V|) parameters
Not applicable to graphs of different sizes
Sensitive to node ordering

Jure Leskovec, Stanford University 7



ldea: Convolutional Networks

CNN on an image:

Subsampling

Goal is to generalize convolutions to graphs

Credit: Stanford CS224\W

Jure Leskovec, Stanford 8



http://web.stanford.edu/class/cs224w/

From Images to Graphs

Single Convolutional neural network (CNN) layer
with 3x3 filter:

Image Graph

Idea: transform information at the neighbors and combine it:
Transform “messages” h; from neighbors: W; h;
Add them up: );; W; h;
Credit: Stanford CS224\W

Jure Leskovec, Stanford University 10



http://web.stanford.edu/class/cs224w/

[Kipfand Welling, ICLR 2017]

Graph Convolutional Networks

ldea: Node’s neighborhood defines a
computation graph
i

i

Determine node Propagate and
computation graph transform information

Learn how to propagate information across the

graph to compute node features
Credit: Stanford CS224W

Jure Leskovec, Stanford University 11



http://web.stanford.edu/class/cs224w/

|ldea: Aggregate Neighbors

Key idea: Generate node embeddings based
on local network neighborhoods
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Credit: Stanford CS224\W

Jure Leskovec, Stanford University


http://web.stanford.edu/class/cs224w/

|ldea: Aggregate Neighbors

Intuition: Nodes aggregate information from
their neighbors using neural networks

TARGET NODE

l

A
./ B «

INPUT GRAPH

Neural networks
Credit; Stanford CS224\W

Jure Leskovec, Stanford University 13



http://web.stanford.edu/class/cs224w/

|ldea: Aggregate Neighbors

Intuition: Network neighborhood defines a

computation graph
Every node defines a computation .
graph based on its neighborhood! /

INPUT GRAPH
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Credit: Stanford CS224\W

Jure Leskovec, Stanford University 14



http://web.stanford.edu/class/cs224w/

Deep Model: Many Layers

Model can be of arbitrary depth:
Nodes have embeddings at each layer

Layer-0 embedding of node w is its input feature, x,,
Layer-k embedding gets information from nodes that

are K hops away

Layer-0
Layer-1 B XA
TARGET NODE B '4‘: c XC’
- Layer-2 .~ » XA
. A’O"” A . XB
® B < :.: ............... ol ® Xp
® ° ® Xp
INPUT GRAPH ‘.‘ A

Jure Leskovec, Stanford University
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Neighborhood Aggregation

Neighborhood aggregation: Key distinctions
are in how different approaches aggregate
information across the layers
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http://web.stanford.edu/class/cs224w/

Neighborhood Aggregation

Basic approach: Average information from
neighbors and apply a neural network

(1) average messages

------- A

TARGET NODE from neighbors P CEEP
l A

. ‘ <-. : ....... ‘
/ A : ................ ' ,' ........ ‘

°-n
INPUOTGRAPH & T A

(2) apply neural network
Credit: Stanford CS224\W

Jure Leskovec, Stanford University 17



http://web.stanford.edu/class/cs224w/

Setup: Learning from Graphs

Assume we have a graph G:
V' is the vertex set
A is the adjacency matrix (assume binary)
X € R™¥I"l is a matrix of node features
v:anode in V; N(v): the set of neighbors of v.

Node features:
Relational data: User/item descriptions, categories
Social networks: User profile, User image

Biological networks: Gene expression profiles, gene
functional information

What if there is no node feature in the graph dataset?

Jure Leskovec, Stanford University 18



The Math: Deep Encoder

Basic approach: Average neighbor messages
and apply a neural network

embedding of

hY = x
v v / v at layer [

hO

[+1 l

h{*D =W, 2 INELv)I + Bjhs?), vi € {0, ... JEl— 13
UEN(V) ’\

Z, = hl()L) Average of neighbor’s  Total number

previous layer embeddings  of |ayers
Non-linearity
(e.g., RelU) Credit: Stanford CS224W

Jure Leskovec, Stanford University 19



http://web.stanford.edu/class/cs224w/

Training the Model

How do we train the model to
generate embeddings?

Need to define a loss function on the embeddings
Credit: Stanford CS224W

Jure Leskovec, Stanford University 20



http://web.stanford.edu/class/cs224w/

How to train a GNN

Node embedding z,, is a function of input graph
Supervised setting: we want to minimize the loss
L:

min L(y, f (z,))

y: node label

L could be L2 if y is real number, or cross entropy
if y is categorical

Credit: Stanford CS224\W

Jure Leskovec, Stanford University


http://web.stanford.edu/class/cs224w/

Model Parameters

Trainable weight matrices
(i.e., what we learn)

v T XU

hy ™ = U(E/z i BIh), vi € {0,..., L — 1)
(% [ |N(U)| ! L'ty ) ) "y

_ h(L) UEN (V)

Final node embedding

We can feed these embeddings into any loss function
and run SGD to train the weight parameters

hl:the hidden representation of node v at layer [
W, : weight matrix for neighborhood aggregation
B;: weight matrix for transforming hidden vector of
self Credit: Stanford CS224W

Jure Leskovec, Stanford University



http://web.stanford.edu/class/cs224w/

Supervised Training

Directly train the model for a supervised task
(e.g., node classification)

Is user going to

churn in the
t next week?
X 8
v2%
< i ;& .
o ® E.g., arelational graph of

users, sales, products

Jure Leskovec, Stanford University 23



Supervised Training

Directly train the model for a supervised task
(e.g., node classification)
Use cross entropy loss

L= Dlog(o @)+ (1 —p)log(1 — o}

VeV
Encoder output: Classification
node embedding weights
Node class
Is user going to churn o .. label

inthe next week? & n ®
Pr ey X Credit: Stanford CS224W

Jure Leskovec, Stanford University 24



http://web.stanford.edu/class/cs224w/

Designing a GNN




J.You,R.Ying, J. Leskovec. , NeurlPS 2020

A General GNN Framework (1)

GNN Layer = Message + Aggregation
l * Different instantiations under this perspective
‘/"' * GCN, GraphSAGE, GAT, ...

INPUT GRAPH g (2) Aggregatio n é

: GNN Layer1

% | & (1) Message

Jure Leskovec, Stanford University 26


https://arxiv.org/pdf/2011.08843.pdf

J.You,R.Ying, J. Leskovec. , NeurlPS 2020

A General GNN Framework (2)

Connect GNN layers into a GNN

TARGET NODE

| * Stack layers sequentially
‘/“ e Ways of adding skip connections

INPUT GRAPH

(3) Layer R fanaurans . .......
connectivity ...

GNN Layer 2

Jure Leskovec, Stanford University 27


https://arxiv.org/pdf/2011.08843.pdf

J.You,R.Ying, J. Leskovec.

A General GNN Framework (3)

N Idea: Raw input graph # computational graph
| e Graph feature augmentation
‘/ * Graph structure augmentation

INPUT GRAPH
Y

6*3

. . .
(4) Graph augmentation

Jure Leskovec, Stanford University

, NeurlPS 2020
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https://arxiv.org/pdf/2011.08843.pdf

J.You,R.Ying, J. Leskovec. , NeurlPS 2020

A General GNN Framework (4)

TARGET NODE
A
INPUT GRAPH
AA

How do we train a GNN

* Supervised/Unsupervised % = &
objectives . Q

 Node/Edge/Graph level ‘

objectives i ‘

%mga

Jure Leskovec, Stanford University 29


https://arxiv.org/pdf/2011.08843.pdf

J.You,R.Ying, J. Leskovec. , NeurlPS 2020

A General GNN Framework (5)

TARGET NODE

l
INPUT GRAPH é t (2) Aggregation é
: GNN Layer1

% & (1) Message
(3) Layer LT ARy ..
connectivity s ‘. . ..... . ............................................. :

A a4 s

GNN Layer 2 %

(4) Graph augmentation

Jure Leskovec, Stanford University 30


https://arxiv.org/pdf/2011.08843.pdf

A Single Layer of a GNN




J.You,R.Ying, J. Leskovec. , NeurlPS 2020

A GNN Layer

GNN Layer = Message + Aggregation
* Different instantiations under this perspective
‘/“  GCN, GraphSAGE, GAT, ...

INPUT GRAPH g (2) Aggregatio n é

: GNN Layer1

TARGET NODE

% | & (1) Message

Jure Leskovec, Stanford University 32


https://arxiv.org/pdf/2011.08843.pdf

A Single GNN Layer

Compress a set of vectors into a single vector

Two step process:

(1) Message Output node embedding hg)

1
i [ e

(2) Aggregation

(2) Aggregation 1
%:é (1) Message ‘|: ® 6 O
. . . Input node embedding hg,l_l) ,hﬁg&m

(from node itself + neighboring nodes)

Jure Leskovec, Stanford University 33



Message Computation

Message function: m_’ = MSG® (hg_l))

Intuition: Each node will create a message, which will be
sent to other nodes later

Example: A Linear layer mfp — w(l)hg—l)
Multiply node features with weight matrix W

TARGET NODE .
o 2) Aggregation
® (2) Aggreg

D ./. %:¢ : (1) Message

INPUT GRAPH

Jure Leskovec, Stanford University 34



Message Aggregation

Intuition: Each node will aggregate the messages from
node v’s neighbors

h? = Ac6» ({mP,u € Nw)})
Example: Sum(-), Mean(-) or Max(-) aggregator
hg) = Sum({mg),u ENW)})

TARGET NODE B Node v

: ® (2) Aggregation
e ® F A
o/. % — & (1) Message

INPUT GRAPH . . .

Jure Leskovec, Stanford University 35




Message Aggregation: Issue

Information from node v itself could get lost

Computation of h,(f) does not directly depend on hff—l)

Include h,(,l_l) when computing hf,l)

compute message from node v itself
Usually, a different message computation will be performed

D _ (1-1 O _ (I-1)
000 ¥ =-woOplv m)’ = Bh),

After aggregating from neighbors, we can
aggregate the message from node v itself

Via or
Then aggregate from node itself

h$ = coNcAT (AGG ({m{, u € N¥)});m{")

Jure Leskovec, Stanford University 36



A Single GNN Layer

Putting things together:

(1) Message: each node computes a message
mg) = MSGW (hg_l)) ,u € {N(v) Uv}
(2) Aggregation: aggregate messages from neighbors

hY) = A6 ({m{,u e N(v)}, mY)

Adds expressiveness
Often written as o(+): ReLU(-), Sigmoid(-), ...
Can be added to message or aggregation

(2) Aggregation

® pm¢® (1) Message
o ® O

Jure Leskovec, Stanford University 37




T. Kipf, M. Welling. , ICLR 2017

Classical GNN Layers: GCN (1)

0 - h(l—l)
h,’ =0 WY z -
v =9 INW)|

UEN(v)

How to write this as Message + Aggregation?

(2) Aggregation

%'.: & (1) Message

Message

Jure Leskovec, Stanford University 38


https://arxiv.org/pdf/1609.02907.pdf

Classical GNN Layers: GCN (2)

(1-1)
h(l) =0 z W(l) hu t (2) Aggregation
’ ueN (v) |N(U)| %.:.ﬁ (1) Message
Message:
Each Neighbor: mg) — W(l)hg_l) (1 the GCN paper they usea slightly

different normalization)

Aggregation:
Sum over messages from neighbors, then apply activation

h,(,l) = U(Sum ({mg),u € N(v)}))

Jure Leskovec & Mina Ghashami, Stanford University 39



Hamiltonetal. , NeurlPS 2017

Classical GNN Layers: GraphSAGE

h =g (w@ . CONCAT (hf}‘”, AGG ({hﬁ‘”, Vu € N(v)}))>

Message is computed within the AGG(")

Stage 1: Aggregate from node neighbors

h}(\%)) — AG(;({hg_l),Vu € N(v)})

Stage 2: Further aggregate over the node itself

h® o (w@ : CONCAT(hS,““,h,(V%,)))

Stanford University


https://arxiv.org/pdf/1706.02216.pdf

Classical GNN Layers: GAT (1)

l -1
hT(J) = O-(ZuEN(v) aqu(l) h‘l(,t ))

1
(04 —

v INW)|
of node u’s message to node v

is the weighting factor (importance)

= a,, is defined

— All neighbors u € N (v) are equally important
to node v



[Velickovic et al., ICLR 2018; Vaswani et al., NIPS 2017]

Classical GNN Layers: GAT (2)

Can we do better than simple
neighborhood aggregation?

Can we let weighting factors a,,,, to be
learned?

Goal: Specify arbitrary importance to different
neighbors of each node in the graph

Idea: Compute embedding h( ) of each node in the
graph following an

Implicitly specify different weights to different nodes in
a neighborhood

Jure Leskove, Stanford University



Attention Mechanism (1)

Let a,,,, be computed as a byproduct of an
attention mechanism a:

(1) Let a compute attention coefficients e,,,, across
pairs of nodes u, v based on their messages:

ey, = a(WOR! ™ wORID)

e, indicates the importance of u's message to node v

eap = a(WOR™D wOR{™)

Jure Leskovec, Stanford University 45



Attention Mechanism (2)

Normalize e, into the final attention weight «,,,,

Use the softmax function, so that ., c y(y) @y = 1:
exp(e’UU)

- z:kEN(v) exp(evk)
Weighted sum based on the final attention weight

[ -1
hi? = 0(Xuen) @ WORS )

WIEIghtEd sum USing Aap,) Xpc) App s |:| A
I—1 - 84
hl(q) — O_(aABW(l)h(B )+aACW(l)hg )+ :‘ ; .............. H h(l_l)
C

a,pWOh,™Y) “AD/

Jure Leskovec, Stanford University 46




Attention Mechanism (3)

What is the form of attention mechanism a?

E.g., use a simple single-layer neural network

a have trainable parameters (weights in the Linear layer)

I |:| Concatenate H Linear erp = a(W(l)hgl_l),W(l)hg_l))

ooooooooooooooooo >
NCEVENCEY = Linear (Concat (W(l) hg"l),w(l)hg‘l)))
a B

Parameters of a are trained jointly:

Learn the parameters together with weight matrices (i.e.,
other parameter of the neural net W®) in an end-to-end
fashion

Jure Leskove, Stanford University 47



Graph Manipulation in GNNs




J.You,R.Ying, J. Leskovec. , NeurlPS 2020

General GNN Framework

Idea: Raw input graph # computational graph

TARGET NODE

| * Graph feature augmentation
‘/“ * Graph structure manipulation
% :: &

6*3

. . .
(4) Graph manipulation

Jure Leskovec, Stanford University 51


https://arxiv.org/pdf/2011.08843.pdf

Why Manipulate Graphs

Our assumption so far has been
Raw input graph = computational graph
Reasons for breaking this assumption

Feature level:
The input graph lacks features = feature augmentation

Structure level:
The graph is too sparse = inefficient message passing
The graph is too dense =2 message passing is too costly

The graph is too large = cannot fit the computational
graph into a GPU

It’s just unlikely that the input graph happens to be
the optimal computation graph for embeddings

Jure Leskovec, Stanford University 52



Graph Manipulation Approaches

Graph Feature manipulation

The input graph lacks features = feature
augmentation

Graph Structure manipulation
The graph is too sparse = Add virtual nodes / edges

The graph is too dense = Sample neighbors when
doing message passing

The graph is too large = Sample subgraphs to
compute embeddings

Will cover later in lecture: Scaling up GNNs

Jure Leskovec, Stanford University 53



Feature Augmentation on Graphs

Why do we need feature augmentation?
(1) Input graph does not have node features

This is common when we only have the adj. matrix
Standard approaches:
a) Assign constant values to nodes

PPPPPPPPPP



Feature Augmentation on Graphs

Why do we need feature augmentation?
(1) Input graph does not have node features

This is common when we only have the adj. matrix
Standard approaches:
b) Assign unique IDs to nodes

These IDs are converted into one-hot vectors

2
One-hot vector for node with ID=5

14 3 ID=5

{
4 / 6 [OI OI Ol OI 1’ 0]

5 Y
INPUT GRAPH Total number of IDs = 6




Feature Augmentation on Graphs

Feature augmentation: constant vs. one-hot

Constant node feature
1

/"\
1;' \ 1

/

e

1

INPUT GRAPH

One-hot node feature

2
P
1;'_,_ \ 3

/

e

5

INPUT GRAPH

Expressive power

Medium. All the nodes are
identical, but GNN can still learn
from the graph structure

High. Each node has a unique ID,
so node-specific information can
be stored

Inductive learning
(Generalize to
unseen nodes)

High. Simple to generalize to new
nodes: we assign constant
feature to them, then apply our
GNN

Low. Cannot generalize to new
nodes: new nodesintroduce new
IDs, GNN doesn’t know how to
embed unseen IDs

Computational
cost

Low. Only 1 dimensional feature

High. O(|V|) dimensional feature,
cannot apply to large graphs

Use cases

Any graph, inductive settings
(generalize to new nodes)

Small graph, transductive settings
(no new nodes)

Jure Leskovec, Stanford University

56




Feature Augmentation on Graphs

(2) Certain features can help GNN learning
Other commonly used augmented features:
Node degree
PageRank
Clustering coefficient



Add Virtual Nodes / Edges

Common approach: Connect 2-hop neighbors via
virtual edges

Intuition: Instead of using adj. matrix A for GNN

computation, use
Authors Papers

Use cases: Bipartite graphs
Author-to-papers (they authored)

2-hop virtual edges make an author-author
collaboration graph

Jure Leskovec, Stanford University 58



Add Virtual Nodes [ Edges

The virtual node will connect to all the

nodes in the graph The virtual
5rap node ‘

Suppose in a sparse graph, two nodes have
shortest path distance of 10

After adding the virtual node, all the nodes .
will have a distance of 2
Node A - Virtual node — Node B /

Benefits: Greatly improves message
passing in sparse graphs

INPUT GRAPH

Jure Leskovec, Stanford University 59



Hamiltonetal. , NeurlPS 2017

Node Neighborhood Sampling

All the nodes are used for message passing

TARGET NODE .A‘:.

l e A
A K
K e .
o
A <« D TETTTTTTEETTRTTTTE ‘V

INPUT GRAPH e

(Randomly) sample a node’s
neighborhood for message passing

Jure Leskovec & Mina Ghashami, Stanford University 60


https://arxiv.org/pdf/1706.02216.pdf

Neighborhood Sampling Example

For example, we can randomly choose 2
neighbors to pass messages

Only nodes B and D will pass message to A

TARGET NODE B ) ‘4‘: c
= x . ‘
® A <«
v
D .

o<
INPUT GRAPH A



Neighborhood Sampling Example

Next time when we compute the embeddings,
we can sample different neighbors

Only nodes C and D will pass message to A

TARGET NODE ‘
v x A
: @ e
® B < N oN: ®
D F

o<
INPUT GRAPH A

Jure Leskovec, Stanford University 62



Ying et al. , KDD 2018

Neighborhood Sampling Example

In expectation, we can get embeddings similar
to the case where all the neighbors are used

Benefits: greatly reduce computational cost

And in practice it works great!

________ A
ARGET NODE ® A‘:.
| 8 ®
A
- e 2@ b B
A <« < - ‘ ..... 4‘.vf .............
26 > -
X ®
oy
INPUTGRAPH . . e A

Jure Leskovec, Stanford University 63
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