Note to other teachers and users of these slides: We would be delighted if you found our
material useful for giving your own lectures. Feel free to use these slides verbatim, or to

modify them to fit your own needs. If you make use of a significant portion of these slides

in yourown lecture, please include this message, or a link to our web site: http://www.mmds.org

Community Detection In
Graphs

http://www.mmds.org/

Networks & Communities

We often think of networks being organized
into modules, clusters, communities:

- L

g ; 1) .A‘

T] ¢

‘;\r"‘f',r'f! r‘;-._ﬂl:!" - .‘
l,.

et
AR

Wl

L
e

¢

A
>

Jure Leskovec, Stanford CS246: Mining Massive Datasets 2

Non-overlapping Clusters

Nodes
000000000000

Nodes
3> 000000000000

Network djacency matrix

Ep_._ﬁ_‘.;

N
-
),
et
¥y
=
U
O
),
=z
=
—
2>
D
V)
-
)
)
©
=
L

Goal

Jure Leskovec, Stanford CS246: Mining Massive Datasets

Movies and Actors

Clusters in Movie-to-Actors Graph

[Andersen, Lang: Communities from seed sets, 2006]

Jure Leskovec, Stanford CS246: Mining Massive Datasets 5

Micro-Markets in Sponsored Search

Find micro-markets by partitioning the

0 -l'|'\-'ll-' :_.‘.,'_,i.; o

sports
bhetting .

[Andersen, Lang: Communities from seed sets, 2006]

Jure Leskovec, Stanford CS246: Mining Massive Datasets 6

Scaling to super-large graphs:
PageRank Nibble

_

The Setting

Graph is large

Assume the graph fits in main memory

For example, to work with a 200M node and 2B edge
graph one needs approx. 16GB RAM.

But the graph is too big for running anything
more than linear time algorithms.

We will cover a PageRank based algorithm
for finding dense clusters.

The runtime of the algorithm will be proportional
to the cluster size (not the graph sizel).

Jure Leskovec, Stanford CS246: Mining Massive Datasets 8

ldea: Seed Nodes

Discovering clusters based on seed nodes
Given: Seed node s

Compute (approximate) Personalized PageRank
(PPR) around node s (teleport set={s})

ldea is that if s belongs to a nice cluster, the
random walk will get trapped inside the cluster

Seed node

Jure Leskovec, Stanford CS246: Mining Massive Datasets

Seed Node: Intuition

T 4.

209 -

208

g 0.7 I Good clusters

06 | // //

~ 05

> " / /

£ 04 it /

03 _l \

£ 0.2 [:

% 0 g] .ii.-“ﬁ....._-"“!....‘“.T-..'ll..i i{.'n
Seed node 8 0O 10 20 30 40 50 60

Algonthm outline: Node rank in decreasing PPR score
Pick a seed node s of interest
Run PPR with teleport set = {s}
Sort the nodes by the decreasing PPR score
Sweep over the nodes and find good clusters

Jure Leskovec, Stanford CS246: Mining Massive Datasets 10

What makes a good cluster?

Undirected graph G(V,E):

Partitioning task:
Divide vertices into 2 disjoint groups A,B = V'\A

A (5) B=V\A
o) (o

Question:
How can we define a “good” cluster in G?

What makes a good cluster?

What makes a good cluster?

Maximize the number of within-cluster
connections

Minimize the number of between-cluster
connections

A I V\A

Jure Leskovec, Stanford CS246: Mining Massive Datasets 12

Graph Cuts

Express cluster quality as a function of the
“edge cut” of the cluster

Cut: Set of edges (edge weights) with only
one node in the cluster:
Note: This works for

CH{(A) — Z WU weighted and unweighted

(set all w;=1) undirected
icA,jeA graphs

* - Cut(A) =2

Jure Leskovec, Stanford CS246: Mining Massive Datasets

Partition quality: Cut score

Quality of a cluster is the weight of connections
pointing outside the cluster

Not so uncommon case:

“Optimal cut”
/ Minimum cut

Problem:
Only considers (external) inter-cluster connections
Does not consider (internal) intra-cluster connectivity

Jure Leskovec, Stanford CS246: Mining Massive Datasets 14

[Shi-Malik]

Graph Partitioning Criteria

Criterion: Conductance:
Connectivity of the group to the rest of the
network relative to the density of the group

sony- LG DEeEiicAje Ay
min(vol(A), 2m—vol(A))

vol(A): total weight of the edges with at least
one endpointin A: vol(4) = };c4 d;
Vol(A)=2*#edges inside A + #edges pointing out of A
Why use conductance? m... number of edges of

the graph

Produces more balanced partitions d.... degree of node |
E...edge set of the graph

Example: Conductance Score

$=2/4=0.5 ¢ =6/92 =0.065

Algorithm Outline: Sweep

—
]

Algorithm outline: 09 -

Pick a seed node s of =Pk Good clusters
interest © 06 - / /

_ o el S]
Run PPR w/ teleport={s} oS /
Sort the nodes by the Soa]
decreasing PPR score S 02 b

© 0.1 o e SE

Sweep over the nodes 0 X e B
and find good clusters 0 10 20 30 40 50 60

Node rank i in decreasing PPR score

Sweep:
Sort nodes by decreasing PPRscorery > 1, > - > 1,
For each i compute ¢p(4; = {uq, ... u;})

Local minima of ¢p(A4;) correspond to good clusters

Jure Leskovec, Stanford CS246: Mining Massive Datasets 17

Computing the Sweep

09 -

The whole Sweep Zos L.
207 Good clusters
curve can be ® 0.6 kSl]
. . c 05 - / /
computed in linear Soalt L]
. 303
time: S 02 "t
201 .---.---.-'""!.m'“'?'-. -
For loop over the nodes o i | eenend]

0O 10 20 30 40 50 60
Keep hash-table of Node rank i in decreasing PPR score

nodes in a set A;

To compute ¢(A;41) = Cut(4;11)/Vol(Ai41)
Vol(Ai+1) = Vol(4;) +djyq
CUt(Ai+1) — CUt(Al) + di+1 — 2#(€dg€S Of Ujyq O Al)

Jure Leskovec, Stanford CS246: Mining Massive Datasets 18

Computing PPR

How to compute Personalized PageRank (PPR)
without touching the whole graph?

Power method won’t work since each single iteration
accesses all nodes of the graph:
rt+1) — BM - r + (1 — pa v At index S

a is a teleport vector: a=1[0 ..010 ...0]T

T is the personalized PageRank vector

Approximate PageRank (AKA PageRank-Nibble)
[Andersen, Chung, Lang, ‘07]

A fast method for computing approximate Personalized
PageRank (PPR) with teleport set S={s}
ApproxPageRank(s, B, €)

s ... seed node

B ... teleportation parameter
€ ... approximation error parameter

Jure Leskovec, Stanford CS246: Mining Massive Datasets 19

Approximate PPR: Overview

Approximate PPR on undirected graph

Lazy random walk, which is a variant of a random walk
that stays put with probability 1/2 at each time step, and
walks to a random neighbor the other half of the time:

L _ 1 HOM
" 2 " 2 d d;... degree of i

I->Uu

Keep track of residual PPRscore q,, = p,, — ()

Residual q,,: how well is PPR score p,, of uis apprOX|mated

Py, is the “true” PageRank of node u
(t)

.. is PageRank estimate of node u ataround ¢

If resndual q, of node u is too blg > & then push the walk

further (distribute some of re5|dual q, to all u’s neighbors along
outgoing edges), else we don’t touch the node

Jure Leskovec, Stanford CS246: Mining Massive Datasets 20

“"Push” Operation

residual PPR score q, = p, — Ty

Idea: a...teleport vector
r... approx. PageRank, q... its residual PageRank
Start with trivial approximation: r = 0andqg = a
Iteratively push PageRank from q to r until g is small

Push: 1 step of a lazy random walk from node u:

Push(u,r,q):

r = r, q’ = (q 1-B...teleport prob
!/

r,=r,+1—-pB)q,
;1 Update r

qu = Eﬂqu Do 1 step of a walk:

for each v such that u - v: Stay at u with prob. %2

, 1, qy Spread remaining %z
Qv = qy T Eﬁd_u fraction of q, as if a

single step of random

returnr’, q’
q walk were appliedto u

Jure Leskovec, Stanford CS246: Mining Massive Datasets

Intuition Behind Push Operation

Push(u, 1, q):
If q,, is large, this r=r q =q
means that we have ry=ry+ (1 -p)qy
underestimated the qx, =§ﬁqu
importance of node u for each v such thatu — v:

/ 1,qu
dv = 9y +Eﬁd_
Then we want to take some returnr’, g

of that residual (q,,) and give
it away, since we know that we have too much of it

1 .
So, we keep Eﬁqu and then give away the rest to our
neighbors, so that we can get rid of it

This correspond to the spreading of %ﬁ q,/d, term

Each node wants to keep giving away this excess
PageRank until all nodes have no or a very small gap in
the excess PageRank

Jure Leskovec, Stanford CS246: Mining Massive Datasets

Observations (1)

Runtime:
Approximate PageRank computes PPR in time

1
. . <
(S(l—ﬁ)) with residual error < &

Power method would take time O(

logn)

o £(1-P)

Graph cut apprOX|mat|on guarantee:
If there exists a cut of conductance ¢ and volume k
then the method finds a cut of conductance

0(/¢/log k)

Details in [Andersen, Chung, Lang. Local graph
partitioning using PageRank vectors, 2007]

http://www. math ucsd edu/”fan/wp/localpa rtfuII pdf

¢, Stanford CS246: Mining Mas 25

Observations (2)

The smaller the € the farther the random walk will
spread and detect far away clusters.

0.9 —

Conductance

0.4 —

0.3

02— |] | Seed ndde —

0.1 —

Naode index
Jure Leskovec, Stanford CS246: Mining Massive Datasets 26

Jure Leskovec, Stanford CS246: Mining Massive Datasets 28

Summary of Approx PPR Alg.

"3

\ Nang -,
. ..‘lll!-. |
i | mea

Seed %de 0O 10 20 30 40 50 60
Algonthm summary: Node rank in decreasing PPR score
Pick a seed node s of interest
Run PPR with teleport set = {s}
Sort the nodes by the decreasing PPR score
Sweep over the nodes and find good clusters

Jure Leskovec, Stanford CS246: Mining Massive Datasets 29

Hierarchical Community
Detection: Louvain Algorithm

-

Example: Cells Are Heterogenous

Every cell in a tissue has a specificrole

W B
. -*
SR A sf)’\f&‘- 0)
- \"1‘0 - "'}A
‘l.?‘ \-I"--.. »
e s '

Challenge:

How to determine roles of cells?

Jure

Plasma blast/cell

Leskovec, Stanford CS246: Mining Massive Datase

ts

31

Cell Type Identification Task
(~20k genes)

: Genes
Single cells .
(1k-1mcells) g Understanding the
roles of cells:

. |dentification of
cell types

Cells

Cell type identification task: Given gene
expressions of cells, assign cells to cell types

Boils down to a clustering task: group cells according
to their gene expression similarities

Jure Leskovec, Stanford CS246: Mining Massive Datasets 32

Cell Type Identification Task

duct

Cells assigned to eplthellal of ® .
endothelial cell type proximal tubule .o. * 83008 Losde

\ .w-' }E‘ o "Ng.¢

mesangial @®°°
J EBka; ~\5ﬁb

T cells

duct principal

UMAP2

endothelial

macrophage

UMAP1
[UMAP. Mcinnes, Healy, Melville. *18]

Jure Leskovec, Stanford CS246: Mining Massive Datasets 33

Challenges with Standard Clustering

Can we use standard clustering methods such
as K-means to solve this problem?

Why standard cluster methods do not work
well?
Data is very high-dimensional (~20k genes per cell)
Data is noisy and sparse (most values will be zero)
Number of clusters (cell types) is unknown

Cell types are hierarchically organized
Definition of cell type is provisional
One cell type can have multiple cell subtypes
Where to put a threshold on a definition of a cell type?

Jure Leskovec, Stanford CS246: Mining Massive Datasets 34

ldea: Represent Cells as a Graph

Idea: Construct a graph between data points
(cells) and detect hierarchical network
communitiesin a graph

Why is graph a good representation?

Natural representation: models cell-cell interaction
Cells with more similar gene expressions are more
likely to interact
Construct a graph based on similarities between gene
expressions of cells
Hierarchical network communities model well cell
type hierarchy

Jure Leskovec, Stanford CS246: Mining Massive Datasets 35

We will cover next:

How to construct a graph from high-dimensional
data?

Efficient k-NN graph construction
How to define network communities?

Modularity
How to detect communities?

Louvain algorithm

Jure Leskovec, Stanford CS246: Mining Massive Datasets 36

Efficient K-NN Graph
Construction

K-NN Graph

K nearest neigbor (K-NN) graph: Directed
graph with vertex set V and an edge from
each v € V to its K most similar objects in V
under a given similarity measure

E.g., cosine similarity, [, distance, [; distance

»
® ./I\{ seed nodewv
.

9 P S 3-nearest

neighbors of v

Jure Leskovec, Stanford CS246: Mining Massive Datasets 38

Computing K-NN Graph

Brute force algorithm:
Takes O(nz) time
Only practical for small datasets!

How to efficiently compute K-NN graph?

NN-Descent [Dong, Charikar, Li. “11]

Scalable method for creating approximate K-NN graph
Suitable for large-scale datasets

Empirical cost is around 0(n1'14)

Suitable for distributed implementation (e.g., Map
Reduce)

Jure Leskovec, Stanford CS246: Mining Massive Datasets 39

NN-Descent Heuristic

NN-Descent is an iterative refinement
algorithm:
Start with a random KNN graph
Each node picks K random other nodes as
its nearest neighbors.
Iteratively refine the list of nearest
neighbors of each node:
A neighbor of a neighbor could also be my
neighbor.
Keep doing this until convergence.

NN-Descent Algorithm

Start with a random K-NN list by sampling K items
foreverynodev € V

Then iteratively for every node v € V:
B|v] ...is the current/approximate K-NN of v

R|v] ...is the current/approximate reverse K-NN of v
Reverse K-NN: R[v] = {u € V|v € B[u]}

Get general neighbors B*|v] = B[v]| U R[v]

For each general neighbor u € B*|v], check the similarity

between v and B*[u] (general neighbors of u are
candidates for new neighbors of v)

Update nearest neighbors list if similarity is higher
compared to the set of current approximate neighbors

Jure Leskovec, Stanford CS246: Mining Massive Datasets 42

Efficient KNN Graph Construction

NNDescent(V,o, K): V... QaFlaSita |
_ : o ...similarity oracle
l;[v] = Random sample of K items V, Vv € K . number of neighbors
Lo B[‘-U] ... approximate
neighbors of v
R =reverse (B) R[v] ... approximate reverse
B*[v] = B[v]UR[v], Vv EV neighbors of v
c=20 B*[v] ... approximate general
forvel: neighbors of v
for u; € B*[v], u, € B*[u4]: ¢ ... counter
l=0(v,u,)
r=ea (Blvl.(uz,1)) | Bry)is organized as a heap
return Bifc = 0 - updates cost 0(logK)
reverse(B):
Rlv] ={ul(v,..) € Blu]}, Vv eV Update KNN heap H

return R return 1 if changed, 0 if not

Jure Leskovec, Stanford CS246: Mining Massive Datasets 43

Example: K = 2

Neighbors:
Bls| = {c,d}
Reverse neighbors:
R[s] = ib,c, e}
General neighbors:
B*[s] =1{b,c,d, e}

S ‘@
B* b = {a,c, s} ‘D“G’
B*[c] = (b, d.s) ()
d]

B = 665} |General neighbors of B*[s]
B'lel ={d,f,9,5} | are new candidates for B[s]

We will check {a, b, e, f, g} as next candidates for B[s]:
Compute ofs, a), ofs, b), o(s, e), o(s, f), o(s, g) and update NNs of s

Arrows denote neighbors of a particular node. For example, arrow from b to s means that b selected s as its

neighbor (but the opposﬂe does not needto be true)

e Leskovec, Stanford CS246: Mining Massive Datasets 44

Cell Type Identification Example

Which similarity measure o to use?

Cells are compared based on their
gene expression profiles

Challenge: Number of genes is very high-dimensional

[| [|

= = Gene expression vector
= B < (~20kdimensions)

[| [|

- o(a,b) -

- -

Approach: First apply SVD (around 50
dimensions) and then compute [, distance in the
low-dimensional space

Jure Leskovec, Stanford CS246: Mining Massive Datasets 46

After KNN Graph Construction

Once we created K-NN graph of cells, how do
we define and detect network communities?

Jure Leskovec, Stanford CS246: Mining Massive Datasets 47

Step 2: Defining the metric
Modularity Maximization

Network Communities

Communities: sets of

tightly connected nodes
Define: Modularity Q
A measure of how well

a network is partitioned
Into communities

Given a partitioning of the
network into groups s € §:

Q o« Y5 | (# edges within group s) —
(expected # edges within group s) |

Need a null model!

Null Model: Configuration Model

Given real G on n nodes and m edges,
construct rewired network G’

Same degree distribution but
5 .) Qg
random connections
.) . ®o— k
Consider G’ as a multigraph
The expected number of edges between nodes
ki kik;
i and j of degrees k; and k; equals to: k; - L
2m 2m
The expected number of edges in (multigraph) G’:
kik;
= _ZlEN JEN 5 % ' ;nzleNk (Z]EN kj) = Note
=12m-2m=m Zku=2m
4m

Jure Leskovec, Stanford CS246: Mining Massive Datasets 50

Modularity

Modularity of partitioning S of graph G:

Qo >5[(#edges within group s) —
(expected # edges within group s)]

Q(G,S) =$Zses Dlies Zjes (Aii - kikj)

Zm L
A =11fi—],

Normalizing const.: -1<Q<1 0 else

Modularity values take range [-1,1]

It is positive if the number of edges within
groups exceeds the expected number

Q greater than 0.3-0.7 means significant
community structure

Jure Leskovec, Stanford CS246: Mining Massive Datasets 51

Community Detection

Idea: We can identify communities by
maximizing modularity

0653 > (1, 44)

SES IEs jEs

Scalable Step 3:

Louvain Algorithm

Greedy algorithm for community detection
O(n logn) run time

Supports weighted graphs
Provides hierarchical communities

Network and communities:

Widely utilized to study
large networks because:

Fast

Rapid convergence Dendrogram:

High modularity output

(i.e., “better communities”) L8888 l l L5484

Jure Leskovec, Stanford CS246: Mining Ma ssive

Louvain Algorithm: At High Level

Louvain algorithm greedily maximizes modularity
Each pass is made of 2 phases:

Phase 1: Modularity is optimized by allowing only
local changes to node-communities memberships

Phase 2: The identified communities are aggregated
into super-nodes to build a new network

Goto Phase 1 e

Jure Leskovec, Stanford CS246: Mining Massive Datasets 56

Louvain: 15t phase (Partitioning)

Put each node in a graph into a distinct
community (one node per community)

For each node i, the algorithm performs two
calculations:

Compute the modularity delta (AQ) when putting
node i into the community of some neighbor j

Move i to a community of node j that yields the
largest gain in AQ
Phase 1 runs until no movementyields a gain

This first phase stops when a local maxima of the modularity is attained, i.e., when no individual node
move can improve the modularity.

Note that the output of the algorithm dependsonthe order in which the nodes are considered.
Researchindicates that the ordering of the nodes does not have a significant influence on the overall

modularity that is obtained.
Jure Leskovec, Stanford CS246: Mining Massive Datasets 57

Louvain: 2" phase (Restructuring)

The communities obtained in the first phase
are contracted into super-nodes, and the
network is created accordingly:

Super-nodes are connected if there is at least one

edge between the nodes of the corresponding
communities

The weight of the edge between the two super-
nodes is the sum of the weights from all edges
between their corresponding communities

Phase 1 is then run on the super-node
network

Jure Leskovec, Stanford CS246: Mining Massive Datasets 58

Louvain Algorithm

1O .
/ 3
2@/ OQ =
{ > o J ' 7
48 50—
8. ®6
150) X
»9 bl
14 @ b .
O 13
12@ w
Modularity Community
Optimization Aggregation
14 4
() #& ()
1st pass Q 2ndpass 26
@)
./ @ _/
16 2

Jure Leskovec, Stanford CS246: Mining Massive Datasets

3

~24

b)/

59

Back to Detecting Cell Types

Input:
Single-cell gene expression data
Steps:
1) Apply SVD to cell gene expression data
(~50 dim)
2) Create K-NN (K=15) graph between the low-
dim cell gene expressions
2) Apply the Louvain algorithm to identify the

clusters

UMAP2

Cell Type Identification Task

Ground truth annotations

duct eplthellal

o 'p
l:;,:{v.
eplthellal of
proximal tubule

3.
duct pr|n0|pal
kY .';"\

Efi
. I . ‘ ° °
i B'::ell \

4

T cell

)
[]

endothelial
macrophage

UMAP1

Jure Leskovec, Stanford CS246: Mining Massive Datasets

UMAP2

Louvain algorithm

SRRt
i

;NG

'Q."‘.“. o.g' '2.. 0’"

™

UMAP1

61

UMAP2

Louvain Hierarchical Groups

duct epithelial

*%i;e,é?{?

epithelial of e
proximal tubule {:‘.'.f?,i.
L X AL ¢ ..0. .\.}':
1y] c. g‘ o
@ op

UMAP1

Jure Leskovec,

UMAP2

Stanford CS246: Mining Mass|

Super-node

epithelial cells

O’h

i

UMAP1

ive Datasets

Summary: Modularity

Modularity:

Overall quality of the partitioning of a graph into
communities

Used to determine the number of communities

Louvain modularity maximization:
Greedy strategy
Great performance, scales to large networks

Jure Leskovec, Stanford CS246: Mining Massive Datasets 63

Extras:

Louvain: Modularity Gain

What is AQ if we move node i to community C?

, C\ 2 2 N 2
QG - ©) - | B - (k) B By’ (b))
where:
Y.,... sum of link weights between nodes in C ZT.
Yot SUM OFf all link weights of nodes in C AN
ki in ... sum of link weights between node i and C Zt;t
k;... sum of all link weights (i.e., degree) of node i W

Jure Leskovec, Stanford CS246: Mining Massive Datasets 65

Louvain: Modularity Gain

More in detail:

Modularity contribution

after merging nodej

2 2 2
. _ Z'.in. —}_}':'.i;.i-n, Zf.of, —}_;‘:?: Z":“’ (me’) A:'.E
AQ (l — C) o 2”) 2”), 2”) 2”) 2”)
\

v) \)
Modularity of C Modularity of i
Self-edge weight

Z‘-:]n
C ki in/2 |
By applying the Modularity definition:
Siot — Sin — (Kin/2) N+ ki — (kii/2) 1 kik;
Ed : . v Q:—Z Aij__ 5(Ci,cj)
ge weight of the resulting super- 2m, “— 2m

node from merging C and i rest of the graph]
(modeled as a single node)

Jure Leskovec, Stanford CS246: Mining Massive Datasets 66

Louvain: Modularity Gain

What is AQ if we move node i to community
C?
D in D tot ’ k; ?
; {ﬂ a (Q'm.) a (ﬂ)]

AQ(i —» () =
Also need to derive AQ(D — i) of taking
node i out of community D.

2in +Kiin - > ior K ’
2m 2m

And then: AQ = AQ(i » C) + AQ(D - i)

Louvain Algorithm

Algorithm 1: Sequential Louvain Algorithm

Input: G=(V,E): graph representation.
Output: C: community sets at each level,
(: modularity at each level.
Var: ¢: vertex u's best candidate community set.

1 Loop outer 18 // Calculate community set and modularity.
2 C+{{u}}, Vuev ; 9 | Q«0:
3 X —Ywy,, e(uyv)eE, uccand vec 20 for ceC do
. ¢ A e DE - xS N
'f i f_l.e{u.mjf—_E. Ueccorvece 21 thQ"—ﬁ_(%ﬂ .
> e ~ 2 C «{c}.VYeeC:print C _and Q ;
6 00p nner 23 / Phase 2: Rebuild Graph]
7 for ucV and ucc do V- — _
8 // Find the best community for vertex u. X = ¢ :JCommunities Cogtracted into super-nodes
A . . - : : 25 +—{e(c,c)}, de(uv)eE, ucce, vece
9 €< argmax AQ _ | Modularity gain e)}L E_{)€ - "
Ve Seluv)EE vec 26 w4 Ywyy, Ve(uv)EE, ucc, vec
10 if b > en 27 il No community changes then
f AQ, .:>0 th I N fy changes th
11 / Update ¥,,, and L;,. 28 | exit outer Loop;
i i # | N r r
12 oot < Lo twlu) ; B X0 +wye ; 29 V&V JE«E | Halting criterion
13 Yo Ly—wu) B X0 —wy e ; for 2"d Phase
14 / Update the community information. l
15 ¢ cU{ut i ce—c—{u} ;
16 it No vertex moves to a new community then the weights of the edges
17 | exit inner Loop; between the new super-nodes

are given by the sum of the
weights of the edges between
vertices in the corresponding
two communities

Halting criterion for 15t Phase

Jure Leskovec, Stanford CS246: Mining Massive Datasets 68

	Slide 1: Community Detection in Graphs
	Slide 2: Networks & Communities
	Slide 3: Non-overlapping Clusters
	Slide 4: Goal: Find Densely Linked Clusters
	Slide 5: Movies and Actors
	Slide 6: Micro-Markets in Sponsored Search
	Slide 7: Scaling to super-large graphs: PageRank Nibble
	Slide 8: The Setting
	Slide 9: Idea: Seed Nodes
	Slide 10: Seed Node: Intuition
	Slide 11: What makes a good cluster?
	Slide 12: What makes a good cluster?
	Slide 13: Graph Cuts
	Slide 14: Cut Score
	Slide 15: Graph Partitioning Criteria
	Slide 16: Example: Conductance Score
	Slide 17: Algorithm Outline: Sweep
	Slide 18: Computing the Sweep
	Slide 19: Computing PPR
	Slide 20: Approximate PPR: Overview
	Slide 23: “Push” Operation
	Slide 24: Intuition Behind Push Operation
	Slide 25: Observations (1)
	Slide 26: Observations (2)
	Slide 28: Example
	Slide 29: Summary of Approx PPR Alg.
	Slide 30: Hierarchical Community Detection: Louvain Algorithm
	Slide 31: Example: Cells Are Heterogenous
	Slide 32: Cell Type Identification Task
	Slide 33: Cell Type Identification Task
	Slide 34: Challenges with Standard Clustering
	Slide 35: Idea: Represent Cells as a Graph
	Slide 36: Up Next
	Slide 37: Efficient K-NN Graph Construction
	Slide 38: K-NN Graph
	Slide 39: Computing K-NN Graph
	Slide 41: NN-Descent Heuristic
	Slide 42: NN-Descent Algorithm
	Slide 43: Efficient KNN Graph Construction
	Slide 44: Example: K 2
	Slide 46: Cell Type Identification Example
	Slide 47: After KNN Graph Construction
	Slide 48: Step 2: Defining the metric Modularity Maximization
	Slide 49: Network Communities
	Slide 50: Null Model: Configuration Model
	Slide 51: Modularity
	Slide 53: Community Detection
	Slide 54: Scalable Step 3: Louvain Algorithm
	Slide 55: Louvain Algorithm
	Slide 56: Louvain Algorithm: At High Level
	Slide 57: Louvain: 1st phase (Partitioning)
	Slide 58: Louvain: 2nd phase (Restructuring)
	Slide 59: Louvain Algorithm
	Slide 60: Back to Detecting Cell Types
	Slide 61: Cell Type Identification Task
	Slide 62: Louvain Hierarchical Groups
	Slide 63: Summary: Modularity
	Slide 64: Extras: Louvain Algorithm
	Slide 65: Louvain: Modularity Gain
	Slide 66: Louvain: Modularity Gain
	Slide 67: Louvain: Modularity Gain
	Slide 68: Louvain Algorithm

