Distributed Databases 2

Instructor: Mateil Zaharia
cs245.stanford.edu

https://cs245.stanford.edu/

Outline

Replication strategies
Partitioning strategies
Atomic commitment & 2PC
CAP

Avoiding coordination

Parallel query execution

CS 245

Review: Atomic Commitment

Informally: either all participants commit a
transaction, or none do

“participants” = partitions involved in a given
transaction

Two Phase Commit (2PC)

1. Transaction coordinator sends prepare
message to each participating node

2. Each participating node responds to
coordinator with prepared or no

3. If coordinator receives all prepared:
» Broadcast commit

4. If coordinator receives any no:
» Broadcast abort

Informal Example

Matel

Confirmed

Pizza tonight?
Sure

<
<

Alice Bob PizzaSpot

CS 245

What Could Go Wrong?

Coordinator

/

I

PREPARE
S

Participant

Participant

Participant

What Could Go Wrong?

Coordinator

]

PREPARED PREPARED What if we don’t
\ hear back?

Participant Participant Participant

CS 245 7

Case 1: Participant
Unavailable

We don’t hear back from a participant

Coordinator can still decide to abort
» Coordinator makes the final call!

Participant comes back online?
» WIll receive the abort message

What Could Go Wrong?

Coordinator

/

I

PREPARE
S

Participant

Participant

Participant

What Could Go Wrong?

Coordinator does not reply!

PR

PREPARED PREPARED PREPARED

|

s

Participant

Participant

Participant

CS 245

10

Case 2: Coordinator
Unavailable

Participants cannot make progress

But: can agree to elect a new coordinator,
never listen to the old one (using consensus)

» Old coordinator comes back? Overruled by
participants, who reject its messages

What Could Go Wrong?

Coordinator

/

I

PREPARE
S

Participant

Participant

Participant

What Could Go Wrong?

Coordinator does not reply!

/T No contact with

PREPARED PREPARED third
\ participant!

Participant Participant Participant

CS 245 13

Case 3: Coordinator and
Participant Unavailable

Worst-case scenario:

» Unavailable/unreachable participant voted to
prepare

» Coordinator heard back all prepare, started
to broadcast commit

» Unavailable/unreachable participant commits

Rest of participants must wait!!!

Coordination is Bad News

Every atomic commitment protocol is blocking
(i.e., may stall) in the presence of:

» Asynchronous network behavior (e.g.,
unbounded delays)
« Cannot distinguish between delay and failure

» Failing nodes
* [f nodes never failed, could just wait

Cool: actual theorem!

Outline

Replication strategies
Partitioning strategies
Atomic commitment & 2PC
CAP

Avoiding coordination

Parallel processing

CS 245

17

PRODUCTS SOLUTIONS SERVICES CuUsTO

_* Home > Solutions > Customner Self-Servi

INKTOMI SOLUTIONS FOR

EARCH THIS SITE
— ¢
GO
powesres hy
Inktomli” 0

ENTERPRISE PORTALS

| The Problem

|
GUSTOMER SELF SERVIGE | o e s e
ustomer satisracuon 1s dire ¥ relate (u} H
CALL GENTERS | answer questions. Eric Brewer

SYSTEMS MAIN

Inktomi Files for $26 Million IPO On Heels of
AOL Software Deal

Dow Jones Newswires
Updated April 16,1998 2:06 p.m. ET

Recommended Videos

WASHINGTON -- The software concern Inktomi Corp. said Thursday —
it plans to sell up to 2.2 million shares in an initial public offering of Could North Korea's 2.

Missiles Reach the o
stock tl¥at*eould raise between $26.4 million and $30.8 million. U.S.? :

Asynchronous Network Model

Messages can be arbitrarily delayed

Can’t distinguish between delayed messages
and failed nodes in a finite amount of time

CAP Theorem

In an asynchronous network, a distributed
database can either:

» guarantee a response from any replica in a
finite amount of time (“availability”) OR

» guarantee arbitrary “consistency”
criteria/constraints about data

but not both

CAP Theorem

Choose either:
» Consistency and “Partition tolerance” (CP)
» Availability and “Partition tolerance” (AP)

Example consistency criteria:
» Exactly one key can have value “Matel”

CAP is a reminder: no free lunch for
distributed systems

Brewer’s Conjecture and the Feasibility of Consistent, Available,
Partition-Tolerant Web Services

Seth Gilbert and Nancy Lynch
Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, MA 02139
sethg@mit.edu,lynch@theory.lcs.mit.edu

Abstract

When designing distributed web services, there are three properties that are commonly
desired: consistency, availability, and partition tolerance. It is impossible to achieve all
three. In this note, we prove this conjecture in the asynchronous network model, and
then discuss solutions to this dilemma in the partially synchronous model.

1 Introduction

At PODC 2000, Brewer!, in an invited talk [2], made the following conjecture: it is impossible for
a web service to provide the following three guarantees:

e Consistency
e Availability
e Partition-tolerance

All three of these properties are desirable — and expected — from real-world web services. In
this note, we will first discuss what Brewer meant by the conjecture; next we will formalize these
concepts and prove the conjecture; finally, we will describe and attempt to formalize some real-world
solutions to this practical difficulty.

'Eric Brewer is a professor at the University of California, Berkeley, and the co-founder and Chief Scientist of
Inktomi.

Why CAP is Important

Reminds us that “consistency” (serializability,
various integrity constraints) is expensive!
» Costs us the ability to provide “always on”
operation (availability)
» Requires expensive coordination

(synchronous communication) even when we
don’t have failures

Let’s Talk About Coordination

If we’re “AP”, then we don’t have to talk
even when we can!

If we’re “CP”, then we have to talk all the
time

How fast can we send messages?

Let’s Talk About Coordination

If we’re “AP”, then we don’t have to talk
even when we can!

If we’re “CP”, then we have to talk all the
time

How fast can we send messages?
» Planet Earth: 144ms RTT

* (77ms if we drill through center of earth)
» Einstein!

Multi-Datacenter
Transactions

Message delays often much worse than
speed of light (due to routing)

44ms apart? maximum 22 conflicting
transactions per second
» Of course, no conflicts, no problem!
» Can scale out across many keys, etc

Pain point for many systems

Do We Have to Coordinate?

Is it possible achieve some forms of
“correctness” without coordination?

Do We Have to Coordinate?

Example: no user in DB has address=NULL

» If no replica assigns address=NULL on their
own, then NULL will never appear in the DB!

Whole topic of research!

» Key finding: most applications have a few
points where they need coordination, but
many operations do not

Coordination Avoidance in Database Systems

Peter Bailis, Alan Fekete', Michael J. Franklin, Ali Ghodsi, Joseph M. Hellerstein, lon Stoica
UC Berkeley and TUniversity of Sydney

ABSTRACT

Minimizing coordination, or blocking communication between con-
currently executing operations, is key to maximizing scalability,
availability, and high performance in database systems. However,
uninhibited coordination-free execution can compromise applica-
tion correctness, or consistency. When is coordination necessary for
correctness? The classic use of serializable transactions is sufficient
to maintain correctness but is not necessary for all applications,
sacrificing potential scalability. In this paper, we develop a formal
framework, invariant confluence, that determines whether an appli-
cation requires coordination for correct execution. By operating
on application-level invariants over database states (e.g., integrity
constraints), invariant confluence analysis provides a necessary and
sufficient condition for safe, coordination-free execution. When
programmers specify their application invariants, this analysis al-
lows databases to coordinate only when anomalies that might violate
invariants are possible. We analyze the invariant confluence of com-
mon invariants and operations from real-world database systems
(i.e., integrity constraints) and applications and show that many are
invariant confluent and therefore achievable without coordination.
We apply these results to a proof-of-concept coordination-avoiding
database prototype and demonstrate sizable performance gains com-
pared to serializable execution, notably a 25-fold improvement over
prior TPC-C New-Order performance on a 200 server cluster.

1. INTRODUCTION
Minimizing coordination is key in high-performance, scalable
database design. Coordination—informally, the requirement that

level correctness, or consistency.' In canonical banking applica-
tion examples, concurrent, coordination-free withdrawal operations
can result in undesirable and “inconsistent” outcomes like negative
account balances—application-level anomalies that the database
should prevent. To ensure correct behavior, a database system must
coordinate the execution of these operations that, if otherwise exe-
cuted concurrently, could result in inconsistent application state.

This tension between coordination and correctness is evidenced
by the range of database concurrency control policies. In tradi-
tional database systems, serializable isolation provides concurrent
operations (transactions) with the illusion of executing in some se-
rial order [15]. As long as individual transactions maintain correct
application state, serializability guarantees correctness [30]. How-
ever, each pair of concurrent operations (at least one of which is
a write) can potentially compromise serializability and therefore
will require coordination to execute [9,21]. By isolating users at
the level of reads and writes, serializability can be overly conser-
vative and may in turn coordinate more than is strictly necessary
for consistency [29, 39, 53, 58]. For example, hundreds of users
can safely and simultaneously retweet Barack Obama on Twitter
without observing a serial ordering of updates to the retweet counter.
In contrast, a range of widely-deployed weaker models require less
coordination to execute but surface read and write behavior that may
in turn compromise consistency [2,9,22,48]. With these alternative
models, it is up to users to decide when weakened guarantees are
acceptable for their applications [6], leading to confusion regarding
(and substantial interest in) the relationship between consistency,
scalability, and availability [1,9,12,18,21,22,28,40].

In this paper, we address the central question inherent in this trade-
off: when 1< coordination <trictlv nece<<arv to maintain annlication-

So Why Bother with
Serializability?

For arbitrary integrity constraints, non-
serializable execution can break constraints

Serializability: just look at reads, writes

To get “coordination-free execution”:
» Must look at application semantics
» Can be hard to get right!
» Strategy: start coordinated, then relax

Punchlines:

Serializability has a provable cost to latency,
availablility, scalability (if there are conflicts)

We can avoid this penalty if we are willing to
look at our application and our application
does not require coordination

» Major topic of ongoing research

Outline

Replication strategies
Partitioning strategies
Atomic commitment & 2PC
CAP

Avoiding coordination

Parallel query execution

CS 245

32

Avoiding Coordination

Several techniques, e.g. the “BASE” ideas

» BASE = “Basically Available, Soft State,
Eventual Consistency”

Lessons from Internet
Services: ACID vs. BA

Dr. Eric A. Brewer

UC Berkeley
Inktomi Corporation

October 29, 1998

CS 245

Avoiding Coordination

Key techniques for BASE:

» Partition data so that most transactions are
local to one partition

» Tolerate stale data (eventual consistency):
* Caches
* Weaker isolation levels
 Helpful ideas: idempotence, commutativity

BASE Example

Sample Schema

user transaction COI’IStraint: eaCh
id xid user’s amt _sold and
name sellerid amt_bought is sum of
amt_sold buyer_id " "
ot o their transactions

ACID Approach: to add a transaction, use 2PC to
update transactions table + records for buyer, seller

One BASE approach: write new transactions to the
transactions table and use a periodic batch job to fill
In the users table

Helpful Ideas

When we delay applying updates to an item,
must ensure we only apply each update once
» Issue if we crash while applying!

» ldempotent operations: same result if you
apply them twice

When different nodes want to update multiple
items, want result independent of msg order
» Commutative operations: A®B = B®@A

Example Weak Consistency
Model: Causal Consistency

Very informally: transactions see causally
ordered operations in their causal order
» Causal order of ops: Oy < O, if done in that

order by one transaction, or if write-read
dependency across two transactions

Causal Consistency Example

Matei’s Replica

Shared Object:

Matei: pizza tonight?
group chat log for |~

Bob: sorry, studying :(

{Matei, Alice, Bob}

Alice: sure!
Alice’s Replica Bob’s Replica
Matei: pizza tonight? Matei: pizza tonight?

Alice: sure! Bob: sorry, studying :(
Bob: sorry, studying :(Alice: surel!

Outline

Replication strategies
Partitioning strategies
Atomic commitment & 2PC
CAP

Avoiding coordination

Parallel query execution

CS 245

40

Why Parallel Execution?

So far, distribution has been a chore, but
there is 1 big potential benefit: performance!

Read-only workloads (analytics) don’t require
much coordination, so great to parallelize

Challenges with Parallelism

Algorithms: how can we divide a particular
computation into pieces (efficiently)?

» Must track both CPU & communication costs

Imbalance: parallelizing doesn’t help if 1 node
Is assighed 90% of the work

Faillures and stragglers: crashed or slow
nodes can make things break

Whole course on this: CS 149

42

Amdahl’s Law

If p Is the fraction of the program that can be
made parallel, running time with N nodes is

T(n)=1-p+ p/N

Result: max possible speedupis 1/ (1 - p)

Example: 80% parallelizable = 5x speedup

Example System Designs

Traditional “massively parallel” DBMS
» Tables partitioned evenly across nodes
» Each physical operator also partitioned
» Pipelining across these operators

MapReduce
» Focus on unreliable, commodity nodes

» Divide work into idempotent tasks, and use
dynamic algorithms for load balancing, fault
recovery and straggler recovery

Example: Distributed Joins

Say we want to compute A <1 B, where A

and B are both partitioned across N nodes:

Node 1 Node 2 Node N

CS 245

45

Example: Distributed Joins

Say we want to compute A > B, where A
and B are both partitioned across N nodes

Algorithm 1: shuffle hash join

» Each node hashes records of A, Bto N
partitions by key, sends partition i to node i

» Each node then joins the records it received

Communication cost: (N-1)/N (|A| + |B|)

Example: Distributed Joins

Say we want to compute A > B, where A
and B are both partitioned across N nodes

Algorithm 2: broadcast join on B
» Each node broadcasts its partition of B to all
other nodes
» Each node then joins B against its A partition

Communication cost: (N-1) |B]

Takeaway

Broadcast join is much faster if |B| « |A]

How to decide when to do which?

Takeaway

Broadcast join is much faster if |B| « |A]

How to decide when to do which?
» Data statistics! (especially tricky if B derived)

Which algorithm is more resistant to load
imbalance from data skew?

Takeaway

Broadcast join is much faster if |B| « |A]

How to decide when to do which?
» Data statistics! (especially tricky if B derived)

Which algorithm is more resistant to load
imbalance from data skew?

» Broadcast: hash partitions may be uneven!

What if A, B were already hash-partitioned?

Planning Parallel Queries

Similar to optimization for 1 machine, but
most optimizers also track data partitioning

» Many physical operators, such as shuffle join,
naturally produce a partitioned dataset

» Some tables already partitioned or replicated

Example: Spark and Spark SQL know when
an intermediate result is hash partitioned
» And APIs let users set partitioning mode

Handling Imbalance

Choose algorithms, hardware, etc that are
unlikely to cause load imbalance

OR

Load balance dynamically at runtime

» Most common: “over-partitioning” (have
#tasks > #nodes and assign as they finish)

» Could also try to split a running task

Handling Faults & Stragglers

If uncommon, just ignore / call the operator /
restart query

Problem: probability of something bad
grows fast with number of nodes

» E.g. if one node has 0.1% probability of
straggling, then with 1000 nodes,

P(none straggles) = (1 - 0.001)1990 ~ 0.37

Fault Recovery Mechanisms

Simple recovery: if a node fails, redo its work
since start of query (or since a checkpoint)

» Used in massively parallel DBMSes, HPC

Analysis: suppose failure rate is f failures / sec
/ node; then a job that runs for T-N seconds

on N nodes and checkpoints every C sec has

E(runtime) = (T/C) E(time to run 1 checkpoint)
= (T/C) (C/(1 - N° + Coneckpoint

Grows fast with N, even if we vary C!

Fault Recovery Mechanisms

Parallel recovery: over-partition tasks; when
a node fails, redistribute its tasks to the others

» Used in MapReduce, Spark, etc

Analysis: suppose failure rate is f failures / sec
/ node; then a job that runs for T-N sec on N
nodes with task of size « 1/f has

E(runtime) = T / (1-f)

This doesn’t grow with N!

55

Processing Time (s)

Example: Parallel Recovery in
Spark Streaming

=®=30s ckpts, 20 nodes

30s ckpts, 40 nodes
==10s ckpts, 20 nodes
10s ckpts, 40 nodes

CO—~=~NNMLWwhA
cCLoUoUoWUIo

Before On Next 3sSecond Third Fourth Fifth 3s Sixth
failure failure 3s 3s 3s 3s

From “Discretized Streams: An Efficient and Fault-Tolerant Model for

CS245 Stream Processing on Large Clusters" 56

Straggler Recovery Methods

General idea: send the slow request/task to
another node (launch a “backup task™)

Threshold approach: if a task is slower than
99t percentile, or 1.5x avg, etc, launch backup

Progress-based approach:
estimate task finish times and launch
tasks likeliest to finish last

o , work left Z
est finish time =
progress rate

Summary

Parallel execution can use many technigques
we saw before, but must consider 3 issues:

» Communication cost: often > compute
(remember our lecture on storage)

» Load balance: need to minimize the time
when last op finishes, not sum of task times

» Fault recovery if at large enough scale

