
Concurrency Control 3

Instructor: Matei Zaharia
cs245.stanford.edu

https://cs245.stanford.edu/

Outline
What makes a schedule serializable?
Conflict serializability
Precedence graphs
Enforcing serializability via 2-phase locking
» Shared and exclusive locks
» Lock tables and multi-level locking

Optimistic concurrency with validation
Concurrency control + recovery
Beyond serializability
CS 245 2

Example: Tj Ti

wj(A)
ri(A)

Commit Ti

Abort Tj

Concurrency Control & Recovery

…
…

… …
…

…

CS 245 3

Non-persistent commit (bad!)
avoided by
recoverable
schedules

Example: Tj Ti

wj(A)
ri(A)
wi(B)

Abort Tj
[Commit Ti]

…
…

…

…
…

…

CS 245 4

Concurrency Control & Recovery

Cascading rollback (bad!)
avoided by
avoids-cascading
-rollback (ACR)
schedules

Core Problem

Schedule is conflict serializable

Tj Ti

But not recoverable

CS 245 5

To Resolve This

Need to mark the “final” decision for each
transaction in our schedules:
» Commit decision: system guarantees

transaction will or has completed
» Abort decision: system guarantees

transaction will or has been rolled back

CS 245 6

Model This as 2 New Actions:

ci = transaction Ti commits

ai = transaction Ti aborts

CS 245 7

...
...

...
...

Tj Ti

wj(A)
ri(A)

ci ¬ can we commit here?

Back to Example

CS 245 8

Definition
Ti reads from Tj in S (Tj ÞS Ti) if:

1. wj(A) <S ri(A)

2. aj <S r(A) (<S: does not precede)

3. If wj(A) <S wk(A) <S ri(A) then ak <S ri(A)

CS 245 9

Definition

Schedule S is recoverable if

whenever Tj ÞS Ti and j ¹ i and ci Î S

then cj <S ci

CS 245 10

Notes

In all transactions, reads and writes must
precede commits or aborts
ó If ci Î Ti, then ri(A) < ai, wi(A) < ai

ó If ai Î Ti, then ri(A) < ai, wi(A) < ai

Also, just one of ci, ai per transaction

CS 245 11

How to Achieve Recoverable
Schedules?

CS 245 12

With 2PL, Hold Write Locks
Until Commit (“Strict 2PL”)

Tj Ti

wj(A)

cj

uj(A)
ri(A)

CS 245 13

...
...

...
...

...
...

With Validation, No Change!

Each transaction’s validation point is its
commit point, and only write after

CS 245 14

Definitions
S is recoverable if each transaction commits
only after all transactions from which it read
have committed

S avoids cascading rollback if each
transaction may read only those values
written by committed transactions

S is strict if each transaction may read and
write only items previously written by
committed transactions (≡ strict 2PL)
CS 245 15

Relationship of Recoverable,
ACR & Strict Schedules

Avoids cascading rollback

Recoverable

ACR

Strict

Serial

CS 245 16

Examples
Recoverable:

w1(A) w1(B) w2(A) r2(B) c1 c2

Avoids Cascading Rollback:
w1(A) w1(B) w2(A) c1 r2(B) c2

Strict:
w1(A) w1(B) c1 w2(A) r2(B) c2

CS 245 17

Recoverability & Serializability

Every strict schedule is serializable

Proof: equivalent to serial schedule based
on the order of commit points
» Only read/write from previously committed

transactions

CS 245 18

Recoverability & Serializability

CS 245 19

CS 245

Outline
What makes a schedule serializable?
Conflict serializability
Precedence graphs
Enforcing serializability via 2-phase locking
» Shared and exclusive locks
» Lock tables and multi-level locking

Optimistic concurrency with validation
Concurrency control + recovery
Beyond serializability

20

Weaker Isolation Levels

Dirty reads: Let transactions read values
written by other uncommitted transactions
» Equivalent to having long-duration write locks,

but no read locks

Read committed: Can only read values from
committed transactions, but they may change
» Equivalent to having long-duration write locks

(X) and short-duration read locks (S)

CS 245 21

Weaker Isolation Levels

Repeatable reads: Can only read values from
committed transactions, and each value will
be the same if read again
» Equivalent to having long-duration read &

write locks (X/S) but not table locks for insert

Remaining problem: phantoms!

CS 245 22

Weaker Isolation Levels

Snapshot isolation: Each transaction sees a
consistent snapshot of the whole DB (as if we
saved all committed values when it began)
» Often implemented with multi-version

concurrency control (MVCC)

Still has some anomalies! Example?

CS 245 23

Weaker Isolation Levels

Snapshot isolation: Each transaction sees a
consistent snapshot of the whole DB (as if we
saved all committed values when it began)
» Often implemented with multi-version

concurrency control (MVCC)

Write skew anomaly: txns write different values
» Constraint: A+B ≥ 0
» T1: read A, B; if A+B ≥ 1, subtract 1 from A
» T2: read A, B; if A+B ≥ 1, subtract 1 from B
» Problem: what if we started with A=1, B=0?

CS 245 24

Interesting Fact

Oracle calls its snapshot isolation level
“serializable”, and doesn’t have the real thing!

CS 245 25

Distributed Databases

Instructor: Matei Zaharia
cs245.stanford.edu

https://cs245.stanford.edu/

Why Distribute Our DB?

Store the same data item on multiple nodes to
survive node failures (replication)

Divide data items & work across nodes to
increase scale, performance (partitioning)

Related reasons:
» Maintenance without downtime
» Elastic resource use (don’t pay when unused)

CS 245 27

Outline

Replication strategies

Partitioning strategies

Atomic commitment & 2PC

CAP

Avoiding coordination

Parallel query execution
CS 245 28

Outline

Replication strategies

Partitioning strategies

Atomic commitment & 2PC

CAP

Avoiding coordination

Parallel query execution
CS 245 29

Replication

General problems:
» How to tolerate server failures?
» How to tolerate network failures?

CS 245 30

CS 245 31

Replication

Store each data item on multiple nodes!

Question: how to read/write to them?

CS 245 32

Primary-Backup

Elect one node “primary”

Store other copies on “backup”

Send requests to primary, which then
forwards operations or logs to backups

Backup coordination is either:
» Synchronous (write to backups before acking)
» Asynchronous (backups slightly stale)

CS 245 33

Quorum Replication

Read and write to intersecting sets of
servers; no one “primary”

Common: majority quorum
» More exotic ones exist, like grid quorums

Surprise: primary-backup
is a quorum too! C1: Write

C2: ReadCS 245 34

What If We Don’t Have
Intersection?

CS 245 35

What If We Don’t Have
Intersection?
Alternative: “eventual consistency”
» If writes stop, eventually all replicas will

contain the same data
» Basic idea: asynchronously broadcast all

writes to all replicas

When is this acceptable?

CS 245 36

How Many Replicas?

In general, to survive F fail-stop failures, we
need F+1 replicas

Question: what if replicas fail arbitrarily?
Adversarially?

CS 245 37

What To Do During Failures?

Cannot contact primary?

CS 245 38

What To Do During Failures?

Cannot contact primary?
» Is the primary failed?
» Or can we simply not contact it?

CS 245 39

What To Do During Failures?

Cannot contact majority?
» Is the majority failed?
» Or can we simply not contact it?

CS 245 40

Solution to Failures

Traditional DB: page the DBA

Distributed computing: use consensus
» Several algorithms: Paxos, Raft
» Today: many implementations
• Apache Zookeeper, etcd, Consul

» Idea: keep a reliable, distributed shared
record of who is “primary”

CS 245 41

Consensus in a Nutshell

Goal: distributed agreement
» On one value or on a log of events

Participants broadcast votes [for each event]
» If a majority of notes ever accept a vote v,

then they will eventually choose v
» In the event of failures, retry that round
» Randomization greatly helps!

Take CS 244B for more details

CS 245 42

What To Do During Failures?

Cannot contact majority?
» Is the majority failed?
» Or can we simply not contact it?

Consensus can provide an answer!
» Although we may need to stall…
» (more on that later)

CS 245 43

Replication Summary

Store each data item on multiple nodes!

Question: how to read/write to them?
» Answers: primary-backup, quorums
» Use consensus to agree on operations or on

system configuration

CS 245 44

Outline

Replication strategies

Partitioning strategies

Atomic commitment & 2PC

CAP

Avoiding coordination

Parallel query execution
CS 245 45

Partitioning

General problem:
» Databases are big!
» What if we don’t want to store the whole

database on each server?

CS 245 46

Partitioning Basics

Split database into chunks called “partitions”
» Typically partition by row
» Can also partition by column (rare)

Place one or more partitions per server

CS 245 47

Partitioning Strategies

Hash keys to servers
» Random assignment

Partition keys by range
» Keys stored contiguously

What if servers fail (or we add servers)?
» Rebalance partitions (use consensus!)

Pros/cons of hash vs range partitioning?
CS 245 48

What About Distributed
Transactions?
Replication:
» Must make sure replicas stay up to date
» Need to reliably replicate the commit log!

(use consensus or primary/backup)

Partitioning:
» Must make sure all partitions commit/abort
» Need cross-partition concurrency control!

CS 245 49

Outline

Replication strategies

Partitioning strategies

Atomic commitment & 2PC

CAP

Avoiding coordination

Parallel query execution
CS 245 50

Atomic Commitment

Informally: either all participants commit a
transaction, or none do

“participants” = partitions involved in a given
transaction

CS 245 51

So, What’s Hard?

CS 245 52

So, What’s Hard?

All the problems of consensus…

…plus, if any node votes to abort, all must
decide to abort
» In consensus, simply need agreement on

“some” value

CS 245 53

Two-Phase Commit

Canonical protocol for atomic commitment
(developed 1976-1978)

Basis for most fancier protocols

Widely used in practice

Use a transaction coordinator
» Usually client – not always!

CS 245 54

Two Phase Commit (2PC)
1. Transaction coordinator sends prepare

message to each participating node

2. Each participating node responds to
coordinator with prepared or no

3. If coordinator receives all prepared:
» Broadcast commit

4. If coordinator receives any no:
» Broadcast abort

CS 245 55

Informal Example

CS 245 56

Matei

Alice Bob

Pizz
a t

onig
ht?

Sure

PizzaSpot

Confir
med

Pi
zz

a
to

ni
gh

t?

Su
re

C
on

fir
m

ed

Got a table for 3 tonight?

Yes we do

I’ll book it

Case 1: Commit

CS 245 57UW CSE545

UW CSE545

Case 2: Abort

2PC + Validation

Participants perform validation upon receipt
of prepare message

Validation essentially blocks between
prepare and commit message

CS 245 59

2PC + 2PL

Traditionally: run 2PC at commit time
» i.e., perform locking as usual, then run 2PC

to have all participants agree that the
transaction will commit

Under strict 2PL, run 2PC before unlocking
the write locks

CS 245 60

2PC + Logging

Log records must be flushed to disk on each
participant before it replies to prepare
» The participant should log how it wants to

respond + data needed if it wants to commit

CS 245 61

2PC + Logging Example

CS 245 62

Coordinator

Participant 1

Participant 2

<T1, Obj1, …>

read, write, etc

<T1, Obj3, …>

<T1, Obj2, …>

<T1, Obj4, …>

← log records

2PC + Logging Example

CS 245 63

Coordinator

Participant 1

Participant 2

<T1, Obj1, …>
prep

are

<T1, Obj3, …>

<T1, Obj2, …>

<T1, Obj4, …>

<T1, ready>

<T1, ready>

prepareready

rea
dy ← log records

<T1, commit>

2PC + Logging Example

CS 245 64

Coordinator

Participant 1

Participant 2

<T1, Obj1, …>
co

mmit

<T1, Obj3, …>

<T1, Obj2, …>

<T1, Obj4, …>

<T1, ready>

<T1, ready>

commitdone

don
e ← log records

<T1, commit>

<T1, commit>

<T1, commit>

Optimizations Galore

Participants can send prepared messages to
each other:
» Can commit without the client
» Requires O(P2) messages

Piggyback transaction’s last command on
prepare message

2PL: piggyback lock “unlock” commands on
commit/abort message

CS 245 65

What Could Go Wrong?

Coordinator

Participant Participant Participant

PREPARE

CS 245 66

What Could Go Wrong?

Coordinator

Participant Participant Participant

PREPARED PREPARED What if we don’t
hear back?

CS 245 67

Case 1: Participant
Unavailable
We don’t hear back from a participant

Coordinator can still decide to abort
» Coordinator makes the final call!

Participant comes back online?
» Will receive the abort message

CS 245 68

What Could Go Wrong?

Participant Participant Participant

PREPARE

CS 245 69

Coordinator

What Could Go Wrong?

Participant Participant Participant

PREPARED PREPARED PREPARED

Coordinator does not reply!

CS 245 70

Case 2: Coordinator
Unavailable
Participants cannot make progress

But: can agree to elect a new coordinator,
never listen to the old one (using consensus)
» Old coordinator comes back? Overruled by

participants, who reject its messages

CS 245 71

What Could Go Wrong?

Coordinator

Participant Participant Participant

PREPARE

CS 245 72

What Could Go Wrong?

Participant Participant Participant

PREPARED PREPARED

Coordinator does not reply!

No contact with
third
participant!

CS 245 73

Case 3: Coordinator and
Participant Unavailable
Worst-case scenario:
» Unavailable/unreachable participant voted to

prepare
» Coordinator hears back all prepare,

broadcasts commit
» Unavailable/unreachable participant commits

Rest of participants must wait!!!

CS 245 74

Other Applications of 2PC

The “participants” can be any entities with
distinct failure modes; for example:
» Add a new user to database and queue a

request to validate their email
» Book a flight from SFO -> JFK on United and

a flight from JFK -> LON on British Airways
» Check whether Bob is in town, cancel my

hotel room, and ask Bob to stay at his place

CS 245 75

Coordination is Bad News

Every atomic commitment protocol is blocking
(i.e., may stall) in the presence of:
» Asynchronous network behavior (e.g.,

unbounded delays)
•Cannot distinguish between delay and failure

» Failing nodes
• If nodes never failed, could just wait

Cool: actual theorem!

CS 245 76

Outline

Replication strategies

Partitioning strategies

Atomic commitment & 2PC

CAP

Avoiding coordination

Parallel processing
CS 245 77

CS 245 78Eric Brewer

Asynchronous Network Model

Messages can be arbitrarily delayed

Can’t distinguish between delayed messages
and failed nodes in a finite amount of time

CS 245 79

CAP Theorem

In an asynchronous network, a distributed
database can either:
» guarantee a response from any replica in a

finite amount of time (“availability”) OR
» guarantee arbitrary “consistency”

criteria/constraints about data

but not both

CS 245 80

CAP Theorem

Choose either:
» Consistency and “Partition Tolerance”
» Availability and “Partition Tolerance”

Example consistency criteria:
» Exactly one key can have value “Matei”

“CAP” is a reminder:
» No free lunch for distributed systems

CS 245 81

Why CAP is Important

Pithy reminder: “consistency” (serializability,
various integrity constraints) is expensive!
» Costs us the ability to provide “always on”

operation (availability)
» Requires expensive coordination

(synchronous communication) even when we
don’t have failures

CS 245 83

