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Outline
What makes a schedule serializable?
Conflict serializability
Precedence graphs
Enforcing serializability via 2-phase locking
» Shared and exclusive locks
» Lock tables and multi-level locking

Optimistic concurrency with validation
Concurrency control + recovery
Beyond serializability
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Example: Tj Ti

wj(A)
ri(A)

Commit Ti

Abort Tj

Concurrency Control & Recovery

…
…

… …
…

…
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Non-persistent commit (bad!)
avoided by
recoverable
schedules



Example: Tj Ti

wj(A)
ri(A)
wi(B)

Abort Tj
[Commit Ti]

…
…

…

…
…

…
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Concurrency Control & Recovery

Cascading rollback (bad!)
avoided by
avoids-cascading
-rollback (ACR)
schedules



Core Problem

Schedule is conflict serializable

Tj Ti

But not recoverable
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To Resolve This

Need to mark the “final” decision for each 
transaction in our schedules:
» Commit decision: system guarantees 

transaction will or has completed
» Abort decision: system guarantees 

transaction will or has been rolled back
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Model This as 2 New Actions:

ci = transaction Ti commits

ai = transaction Ti aborts

CS 245 7



...
...

...
...

Tj Ti

wj(A)
ri(A)

ci ¬ can we commit here?

Back to Example
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Definition
Ti reads from Tj in S (Tj ÞS Ti) if:

1. wj(A) <S ri(A)

2.  aj <S r(A)        (<S: does not precede)

3. If wj(A) <S wk(A) <S ri(A) then ak <S ri(A) 
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Definition

Schedule S is recoverable if 

whenever Tj ÞS Ti and  j ¹ i and ci Î S

then cj <S ci
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Notes

In all transactions, reads and writes must 
precede commits or aborts
ó If ci Î Ti, then ri(A) < ai, wi(A) < ai

ó If ai Î Ti, then ri(A) < ai, wi(A) < ai

Also, just one of ci, ai per transaction
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How to Achieve Recoverable 
Schedules?
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With 2PL, Hold Write Locks 
Until Commit (“Strict 2PL”)

Tj Ti

wj(A)

cj

uj(A)
ri(A)
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With Validation, No Change!

Each transaction’s validation point is its 
commit point, and only write after
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Definitions
S is recoverable if each transaction commits 
only after all transactions from which it read 
have committed

S avoids cascading rollback if each 
transaction may read only those values 
written by committed transactions

S is strict if each transaction may read and 
write only items previously written by 
committed transactions (≡ strict 2PL)
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Relationship of Recoverable, 
ACR & Strict Schedules

Avoids cascading rollback

Recoverable

ACR

Strict

Serial
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Examples
Recoverable:

w1(A) w1(B) w2(A) r2(B) c1 c2

Avoids Cascading Rollback:
w1(A) w1(B) w2(A) c1  r2(B) c2

Strict:
w1(A) w1(B) c1 w2(A) r2(B) c2
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Recoverability & Serializability

Every strict schedule is serializable

Proof: equivalent to serial schedule based 
on the order of commit points
» Only read/write from previously committed 

transactions
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Recoverability & Serializability
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Precedence graphs
Enforcing serializability via 2-phase locking
» Shared and exclusive locks
» Lock tables and multi-level locking

Optimistic concurrency with validation
Concurrency control + recovery
Beyond serializability
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Weaker Isolation Levels

Dirty reads: Let transactions read values 
written by other uncommitted transactions
» Equivalent to having long-duration write locks, 

but no read locks

Read committed: Can only read values from 
committed transactions, but they may change
» Equivalent to having long-duration write locks 

(X) and short-duration read locks (S)
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Weaker Isolation Levels

Repeatable reads: Can only read values from 
committed transactions, and each value will 
be the same if read again
» Equivalent to having long-duration read & 

write locks (X/S) but not table locks for insert

Remaining problem: phantoms!
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Weaker Isolation Levels

Snapshot isolation: Each transaction sees a 
consistent snapshot of the whole DB (as if we 
saved all committed values when it began)
» Often implemented with multi-version 

concurrency control (MVCC)

Still has some anomalies! Example?
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Weaker Isolation Levels

Snapshot isolation: Each transaction sees a 
consistent snapshot of the whole DB (as if we 
saved all committed values when it began)
» Often implemented with multi-version 

concurrency control (MVCC)

Write skew anomaly: txns write different values
» Constraint: A+B ≥ 0
» T1: read A, B; if A+B ≥ 1, subtract 1 from A
» T2: read A, B; if A+B ≥ 1, subtract 1 from B
» Problem: what if we started with A=1, B=0?
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Interesting Fact

Oracle calls its snapshot isolation level 
“serializable”, and doesn’t have the real thing!
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Distributed Databases

Instructor: Matei Zaharia
cs245.stanford.edu

https://cs245.stanford.edu/


Why Distribute Our DB?

Store the same data item on multiple nodes to 
survive node failures (replication)

Divide data items & work across nodes to 
increase scale, performance (partitioning)

Related reasons:
» Maintenance without downtime
» Elastic resource use (don’t pay when unused)
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Outline

Replication strategies

Partitioning strategies

Atomic commitment & 2PC

CAP

Avoiding coordination

Parallel query execution
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Outline

Replication strategies

Partitioning strategies

Atomic commitment & 2PC

CAP

Avoiding coordination

Parallel query execution
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Replication

General problems:
» How to tolerate server failures?
» How to tolerate network failures?
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Replication

Store each data item on multiple nodes!

Question: how to read/write to them?
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Primary-Backup

Elect one node “primary”

Store other copies on “backup”

Send requests to primary, which then 
forwards operations or logs to backups

Backup coordination is either:
» Synchronous (write to backups before acking)
» Asynchronous (backups slightly stale)
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Quorum Replication

Read and write to intersecting sets of 
servers; no one “primary”

Common: majority quorum
» More exotic ones exist, like grid quorums

Surprise: primary-backup
is a quorum too! C1: Write

C2: ReadCS 245 34



What If We Don’t Have 
Intersection?
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What If We Don’t Have 
Intersection?
Alternative: “eventual consistency”
» If writes stop, eventually all replicas will 

contain the same data
» Basic idea: asynchronously broadcast all 

writes to all replicas

When is this acceptable?
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How Many Replicas?

In general, to survive F fail-stop failures, we 
need F+1 replicas

Question: what if replicas fail arbitrarily? 
Adversarially?
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What To Do During Failures?

Cannot contact primary?

CS 245 38



What To Do During Failures?

Cannot contact primary?
» Is the primary failed?
» Or can we simply not contact it?
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What To Do During Failures?

Cannot contact majority?
» Is the majority failed?
» Or can we simply not contact it?
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Solution to Failures

Traditional DB: page the DBA

Distributed computing: use consensus
» Several algorithms: Paxos, Raft
» Today: many implementations
• Apache Zookeeper, etcd, Consul

» Idea: keep a reliable, distributed shared 
record of who is “primary”
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Consensus in a Nutshell

Goal: distributed agreement
» On one value or on a log of events

Participants broadcast votes [for each event]
» If a majority of notes ever accept a vote v, 

then they will eventually choose v
» In the event of failures, retry that round
» Randomization greatly helps!

Take CS 244B for more details
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What To Do During Failures?

Cannot contact majority?
» Is the majority failed?
» Or can we simply not contact it?

Consensus can provide an answer!
» Although we may need to stall…
» (more on that later)
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Replication Summary

Store each data item on multiple nodes!

Question: how to read/write to them?
» Answers: primary-backup, quorums
» Use consensus to agree on operations or on 

system configuration
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Outline

Replication strategies

Partitioning strategies

Atomic commitment & 2PC

CAP

Avoiding coordination

Parallel query execution
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Partitioning

General problem:
» Databases are big!
» What if we don’t want to store the whole 

database on each server?
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Partitioning Basics

Split database into chunks called “partitions”
» Typically partition by row
» Can also partition by column (rare)

Place one or more partitions per server
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Partitioning Strategies

Hash keys to servers
» Random assignment

Partition keys by range
» Keys stored contiguously

What if servers fail (or we add servers)?
» Rebalance partitions (use consensus!)

Pros/cons of hash vs range partitioning?
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What About Distributed 
Transactions?
Replication:
» Must make sure replicas stay up to date
» Need to reliably replicate the commit log! 

(use consensus or primary/backup)

Partitioning:
» Must make sure all partitions commit/abort
» Need cross-partition concurrency control!
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Outline

Replication strategies

Partitioning strategies

Atomic commitment & 2PC

CAP

Avoiding coordination

Parallel query execution
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Atomic Commitment

Informally: either all participants commit a 
transaction, or none do

“participants” = partitions involved in a given
transaction
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So, What’s Hard?
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So, What’s Hard?

All the problems of consensus…

…plus, if any node votes to abort, all must 
decide to abort
» In consensus, simply need agreement on 

“some” value
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Two-Phase Commit

Canonical protocol for atomic commitment 
(developed 1976-1978)

Basis for most fancier protocols

Widely used in practice

Use a transaction coordinator
» Usually client – not always!
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Two Phase Commit (2PC)
1. Transaction coordinator sends prepare

message to each participating node

2. Each participating node responds to 
coordinator with prepared or no

3. If coordinator receives all prepared:
» Broadcast commit

4. If coordinator receives any no:
» Broadcast abort
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Informal Example
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Matei

Alice Bob

Pizz
a t

onig
ht?

Sure

PizzaSpot

Confir
med

Pi
zz

a 
to

ni
gh

t?

Su
re

C
on

fir
m

ed

Got a table for 3 tonight?

Yes we do

I’ll book it



Case 1: Commit
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UW CSE545

Case 2: Abort



2PC + Validation

Participants perform validation upon receipt 
of prepare message

Validation essentially blocks between 
prepare and commit message
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2PC + 2PL

Traditionally: run 2PC at commit time
» i.e., perform locking as usual, then run 2PC 

to have all participants agree that the 
transaction will commit

Under strict 2PL, run 2PC before unlocking 
the write locks
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2PC + Logging

Log records must be flushed to disk on each 
participant before it replies to prepare
» The participant should log how it wants to 

respond + data needed if it wants to commit
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2PC + Logging Example
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Coordinator

Participant 1

Participant 2

<T1, Obj1, …>

read, write, etc

<T1, Obj3, …>

<T1, Obj2, …>

<T1, Obj4, …>

← log records



2PC + Logging Example
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Coordinator

Participant 1

Participant 2

<T1, Obj1, …>
prep

are

<T1, Obj3, …>

<T1, Obj2, …>

<T1, Obj4, …>

<T1, ready>

<T1, ready>

prepareready

rea
dy ← log records

<T1, commit>



2PC + Logging Example
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Coordinator

Participant 1

Participant 2

<T1, Obj1, …>
co

mmit

<T1, Obj3, …>

<T1, Obj2, …>

<T1, Obj4, …>

<T1, ready>

<T1, ready>

commitdone

don
e ← log records

<T1, commit>

<T1, commit>

<T1, commit>



Optimizations Galore

Participants can send prepared messages to 
each other:
» Can commit without the client
» Requires O(P2) messages

Piggyback transaction’s last command on 
prepare message

2PL: piggyback lock “unlock” commands on 
commit/abort message
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What Could Go Wrong?

Coordinator

Participant Participant Participant

PREPARE
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What Could Go Wrong?

Coordinator

Participant Participant Participant

PREPARED PREPARED What if we don’t
hear back?
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Case 1: Participant 
Unavailable
We don’t hear back from a participant

Coordinator can still decide to abort
» Coordinator makes the final call!

Participant comes back online?
» Will receive the abort message

CS 245 68



What Could Go Wrong?

Participant Participant Participant

PREPARE
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Coordinator



What Could Go Wrong?

Participant Participant Participant

PREPARED PREPARED PREPARED

Coordinator does not reply!
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Case 2: Coordinator 
Unavailable
Participants cannot make progress

But: can agree to elect a new coordinator, 
never listen to the old one (using consensus)
» Old coordinator comes back? Overruled by 

participants, who reject its messages
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What Could Go Wrong?

Coordinator

Participant Participant Participant

PREPARE
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What Could Go Wrong?

Participant Participant Participant

PREPARED PREPARED

Coordinator does not reply!

No contact with
third
participant!
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Case 3: Coordinator and 
Participant Unavailable
Worst-case scenario:
» Unavailable/unreachable participant voted to 

prepare
» Coordinator hears back all prepare, 

broadcasts commit
» Unavailable/unreachable participant commits

Rest of participants must wait!!!
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Other Applications of 2PC

The “participants” can be any entities with 
distinct failure modes; for example:
» Add a new user to database and queue a 

request to validate their email
» Book a flight from SFO -> JFK on United and 

a flight from JFK -> LON on British Airways
» Check whether Bob is in town, cancel my 

hotel room, and ask Bob to stay at his place
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Coordination is Bad News

Every atomic commitment protocol is blocking
(i.e., may stall) in the presence of:
» Asynchronous network behavior (e.g., 

unbounded delays)
•Cannot distinguish between delay and failure

» Failing nodes
• If nodes never failed, could just wait

Cool: actual theorem!
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Outline

Replication strategies

Partitioning strategies

Atomic commitment & 2PC

CAP

Avoiding coordination

Parallel processing
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Asynchronous Network Model

Messages can be arbitrarily delayed

Can’t distinguish between delayed messages 
and failed nodes in a finite amount of time
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CAP Theorem

In an asynchronous network, a distributed 
database can either:
» guarantee a response from any replica in a 

finite amount of time (“availability”) OR
» guarantee arbitrary “consistency” 

criteria/constraints about data

but not both

CS 245 80



CAP Theorem

Choose either:
» Consistency and “Partition Tolerance”
» Availability and “Partition Tolerance”

Example consistency criteria:
» Exactly one key can have value “Matei”

“CAP” is a reminder:
» No free lunch for distributed systems
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Why CAP is Important

Pithy reminder: “consistency” (serializability, 
various integrity constraints) is expensive!
» Costs us the ability to provide “always on” 

operation (availability)
» Requires expensive coordination 

(synchronous communication) even when we 
don’t have failures
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