
Indexes Part 2 and Query
Execution

Instructor: Matei Zaharia
cs245.stanford.edu

https://cs245.stanford.edu/

From Last Time: Indexes

Conventional indexes

B-trees

Hash indexes

Multi-key indexing

CS 245 2

Hash Indexes

key h(key)

record / ptr

...

Buckets
(block sized)

Buckets can contain records or pointers to file

overflow
bucket

CS 245 3

Chaining is used to handle bucket overflow

Hash vs Tree Indexes

+ O(1) instead of O(log N) disk accesses

– Can’t efficiently do range queries

CS 245 4

Challenge: Resizing

Hash tables try to keep occupancy in a fixed
range (50-80%) and slow down beyond that
» Too much chaining

How to resize the table when this happens?
» In memory: just move everything, amortized

cost is pretty low
» On disk: moving everything is expensive!

CS 245 5

Extendible Hashing

Tree-like design for hash tables that allows
cheap resizing while requiring 2 IOs / access

CS 245 6

Extendible Hashing: 2 Ideas

(a) Use i of b bits output by hash function
b

h(K) ®

i

i will grow over time; the first i bits of each
key’s hash are used to map it to a bucket

00110101

CS 245 7

(b) Use a directory with pointers to buckets

h(K)[0..i] to bucket
...

...

Extendible Hashing: 2 Ideas

CS 245 8

Example: 4-bit h(K), 2 keys/bucket

i = 1
1

1

0001

1001
1100

CS 245 9

local depth
global depth

0010

Insert 0010

Example: 4-bit h(K), 2 keys/bucket

i = 1
1

1

0001

1001
1100

Insert 1010

CS 245 10

local depth
global depth

i = 1
1

1

0001

1001
1100

Insert 1010
1
1100

1010

Example: 4-bit h(K), 2 keys/bucket

CS 245 11

i = 1
1

1

0001

1001
1100

Insert 1010
1
1100

1010

New directory

2
00

01

10

11

i =

2

2

Example: 4-bit h(K), 2 keys/bucket

CS 245 12

1
0001

2
1001
1010
2
1100

Insert:

0111

0000

00

01

10

11

2i =

Example

CS 245 13

1
0001

2
1001
1010
2
1100

Insert:

0111

0000

00

01

10

11

2i =

0111

0000

0111

0001

Example

CS 245 14

1
0001

2
1001
1010
2
1100

Insert:

0111

0000

00

01

10

11

2i =

0111

0000

0111

0001

2

2Example

CS 245 15

00

01

10

11

2i =

21001
1010

21100

20111

20000
0001

Example

Note: still need
chaining if values
of h(K) repeat and

fill a bucket

CS 245 16

Some Types of Indexes

Conventional indexes

B-trees

Hash indexes

Multi-key indexing

CS 245 17

Motivation

Example: find records where

DEPT = “Toy” AND SALARY > 50k

CS 245 18

Strategy I:

Use one index, say Dept.

Get all Dept = “Toy” records
and check their salary

I1

CS 245 19

Strategy II:

Use 2 indexes; intersect lists of pointers

Toy Sal
> 50k

CS 245 20

Strategy III:

Multi-key index

One design:

I1

I2

I3

CS 245 21

h

n
b

i a

co

de

g

f

m

l

k
j

k-d Trees

CS 245 23

Split dimensions in any order
to hold k-dimensional data

h

n
b

i a

co

d

10 20

10 20

e

g

f

m

l

k
j

CS 245 24

k-d Trees

h

n
b

i a

co

d

10 20

10 20

e

g

f

m

l

k
j25 15 35 20

40

30

20

10

CS 245 25

k-d Trees

h

n
b

i a

co

d

10 20

10 20

e

g

f

m

l

k
j25 15 35 20

40

30

20

10

5

15 15

CS 245 26

k-d Trees

h

n
b

i a

co

d

10 20

10 20

e

g

f

m

l

k
j25 15 35 20

40

30

20

10

5

15 15

h i a bcd efg

n omlj k

Efficient range
queries in both

dimensions
CS 245 27

k-d Trees

Storage System Examples

MySQL: transactional DBMS
» Row-oriented storage with 16 KB pages
» Variable length records with headers, overflow
» Index types:
• B-tree
•Hash (in memory only)
• R-tree (spatial data)
• Inverted lists for full text search

» Can compress pages with Lempel-Ziv

CS 245 29

Apache Parquet + Hive: analytical data lake
» Column-oriented storage as set of ~1 GB files

(each file has a slice of all columns)
» Various compression and encoding schemes

at the level of pages in a file
• Special scheme for nested fields (Dremel)

» Header with statistics at the start of each file
•Min/max of columns, nulls, Bloom filter

» Files partitioned into directories by one key

CS 245 30

Storage System Examples

Query Execution

Overview

Relational operators

Execution methods

CS 245 31

Query Execution Overview

Recall that one of our key principles in data
intensive systems was declarative APIs
» Specify what you want to compute, not how

We saw how these can translate into many
storage strategies

How to execute queries in a declarative API?

CS 245 32

Query Execution Overview

Query representation
(e.g. SQL)

Logical query plan
(e.g. relational algebra)

Optimized logical plan

Physical plan
(code/operators to run)

Many execution
methods: per-record
exec, vectorization,

compilation

CS 245 33

Plan Optimization Methods

Rule-based: systematically replace some
expressions with other expressions
» Replace X OR TRUE with TRUE
» Replace M*A + M*B with M*(A+B) for matrices

Cost-based: propose several execution plans
and pick best based on a cost model

Adaptive: update execution plan at runtime

CS 245 34

Execution Methods

Interpretation: walk through query plan
operators for each record

Vectorization: walk through in batches

Compilation: generate code (like System R)

CS 245 35

parse

convert

apply rules

estimate result sizes

consider physical plans estimate costs

pick best

execute

{P1, P2, …}

{(P1,C1), (P2,C2), ...}

Pi

result

SQL query

parse tree

logical query plan

“improved” l.q.p

l.q.p. +sizes

statistics

Typical RDBMS Execution

CS 245 36

Query Execution

Overview

Relational operators

Execution methods

CS 245 37

The Relational Algebra

Collection of operators over tables (relations)
» Each table has named attributes (fields)

Codd’s original RA: tables are sets of tuples
(unordered and tuples cannot repeat)

SQL’s RA: tables are bags (multisets) of
tuples; unordered but each tuple may repeat

CS 245 38

Relational Algebra Operators

Basic set operators:

Intersection: R ∩ S

Union: R ∪ S

Difference: R – S

Cartesian Product: R ⨯ S

for tables with same schema

CS 245 39

{ (r, s) | r ∈ R, s ∈ S }

Relational Algebra Operators

Basic set operators:

Intersection: R ∩ S

Union: R ∪ S

Difference: R – S

Cartesian Product: R ⨯ S

CS 245 40

consider both distinct (set union)
and non-distinct (bag union)

Relational Algebra Operators

Special query processing operators:

Selection: σcondition(R)

Projection: Pexpressions(R)

Natural Join: R ⨝ S

{ r ∈ R | condition(r) is true }

{ expressions(r) | r ∈ R }

{ (r, s) ∈ R ⨯ S) | r.key = s.key }
where key is the common fields

CS 245 41

Relational Algebra Operators

Special query processing operators:

Aggregation: keysGagg(attr)(R)

Examples: departmentGMax(salary)(Employees)

GMax(salary)(Employees)

SELECT agg(attr)
FROM R
GROUP BY keys

CS 245 42

Algebraic Properties

Many properties about which combinations
of operators are equivalent
» That’s why it’s called an algebra!

CS 245 43

Properties: Unions, Products
and Joins
R ∪ S = S ∪ R
R ∪ (S ∪ T) = (R ∪ S) ∪ T

R ⨯ S = S ⨯ R
(R ⨯ S) ⨯ T = R ⨯ (S ⨯ T)

R ⨝ S = S ⨝ R
(R ⨝ S) ⨝ T = R ⨝ (S ⨝ T)
CS 245 44

Attribute order in a relation
doesn’t matter either

Tuple order in a relation
doesn’t matter (unordered)

Properties: Selects

σp∧q(R) =

σp∨q(R) =

CS 245 45

Properties: Selects

σp∧q(R) = σp(σq(R))

σp∨q(R) = σp(R) ∪ σq(R)

CS 245 46

careful with repeated elements

Bags vs. Sets

R = {a,a,b,b,b,c}

S = {b,b,c,c,d}

R ∪ S = ?

CS 245 47

Bags vs. Sets

R = {a,a,b,b,b,c}

S = {b,b,c,c,d}

R ∪ S = ?

CS 245 48

• Option 1: SUM of counts
R ∪ S = {a,a,b,b,b,b,b,c,c,c,d}

• Option 2: MAX of counts
R ∪ S = {a,a,b,b,b,c,c,d}

Executive Decision

Use “SUM” option for bag unions

Some rules that work for set unions cannot
be used for bags

CS 245 49

Let: X = set of attributes
Y = set of attributes

PX∪Y (R) =

Properties: Project

CS 245 50

Let: X = set of attributes
Y = set of attributes

PX∪Y (R) = PX(PY(R))

Properties: Project

CS 245 51

Let: X = set of attributes
Y = set of attributes

PX∪Y (R) = PX(PY(R))

Properties: Project

CS 245 52

Properties: σ + ⨝

Let p = predicate with only R attribs

q = predicate with only S attribs

m = predicate with only R, S attribs

σp(R ⨝ S) =

σq(R ⨝ S) =
CS 245 53

Properties: σ + ⨝

Let p = predicate with only R attribs

q = predicate with only S attribs

m = predicate with only R, S attribs

σp(R ⨝ S) = σp(R) ⨝ S

σq(R ⨝ S) = R ⨝ σq(S)
CS 245 54

Properties: σ + ⨝

Some rules can be derived:

σp∧q(R ⨝ S) =

σp∧q∧m(R ⨝ S) =

σp∨q(R ⨝ S) =

CS 245 55

Properties: σ + ⨝

Some rules can be derived:

σp∧q(R ⨝ S) = σp(R) ⨝ σq(S)

σp∧q∧m(R ⨝ S) = σm(σp(R) ⨝ σq(S))

σp∨q(R ⨝ S) = (σp(R) ⨝ S) ∪ (R ⨝ σq(S))

CS 245 56

Prove One, Others for Practice

σp∧q(R ⨝ S) = σp (σq(R ⨝ S))

= σp (R ⨝ σq(S))

= σp (R) ⨝ σq(S)

CS 245 57

Properties: P + σ

Let x = subset of R attributes

z = attributes in predicate p
(subset of R attributes)

Px(σp (R)) =

CS 245 58

Properties: P + σ

Let x = subset of R attributes

z = attributes in predicate p
(subset of R attributes)

Px(σp (R)) = σp(Px(R))

CS 245 59

Properties: P + σ

Let x = subset of R attributes

z = attributes in predicate p
(subset of R attributes)

Px(σp (R)) = Px(σp(Px∪z(R)))

CS 245 60

Let x = subset of R attributes
y = subset of S attributes
z = intersection of R,S attributes

Px∪y(R ⨝ S) = Px∪y ((Px∪z (R)) ⨝ (Py∪z (S)))

CS 245 61

Properties: P + ⨝

parse

convert

apply rules

estimate result sizes

consider physical plans estimate costs

pick best

execute

{P1, P2, …}

{(P1,C1), (P2,C2), ...}

Pi

result

SQL query

parse tree

logical query plan

“improved” l.q.p

l.q.p. +sizes

statistics

Typical RDBMS Execution

CS 245 62

Example SQL Query

SELECT title
FROM StarsIn
WHERE starName IN (

SELECT name
FROM MovieStar
WHERE birthdate LIKE ‘%1960’

);

(Find the movies with stars born in 1960)

CS 245 63

Parse Tree <Query>

<SFW>

SELECT <SelList> FROM <FromList> WHERE <Condition>

<Attribute> <RelName> <Tuple> IN <Query>

title StarsIn <Attribute> (<Query>)

starName <SFW>

SELECT <SelList> FROM <FromList> WHERE <Condition>

<Attribute> <RelName> <Attribute> LIKE <Pattern>

name MovieStar birthDate ‘%1960’

CS 245 64

Ptitle

sstarName=name

StarsIn Pname

sbirthdate LIKE ‘%1960’

MovieStar

´

Logical Query Plan

CS 245 65

Improved Logical Query Plan

Ptitle

starName=name

StarsIn Pname

sbirthdate LIKE ‘%1960’

MovieStar

Question:
Push Ptitle
to StarsIn?

CS 245 66

Need expected size

StarsIn

MovieStar

P

s

Estimate Result Sizes

CS 245 67

Parameters: join order,
memory size, project attributes, ...Hash join

Seq scan Index scan Parameters:
select condition, ...

StarsIn MovieStar

One Physical Plan

H

CS 245 68

Parameters: join order,
memory size, project attributes, ...Hash join

Index scan Seq scan Parameters:
select condition, ...

StarsIn MovieStar

Another Physical Plan

H

CS 245 69

Sort-merge join

Seq scan Seq scan

StarsIn MovieStar

Another Physical Plan

CS 245 70

Which plan is likely to be better?

Logical plan

P1 P2 … Pn

C1 C2 … Cn

Pick best!

Estimating Plan Costs

Physical plan
candidates

CS 245 71

Covered in next few lectures!

Query Execution

Overview

Relational operators

Execution methods

CS 245 72

Now That We Have a Plan,
How Do We Run it?

Several different options that trade between
complexity, setup time & performance

CS 245 73

Example: Simple Query

SELECT quantity * price
FROM orders
WHERE productId = 75

Pquanity*price (σproductId=75 (orders))

CS 245 74

Method 1: Interpretation
interface Operator {
Tuple next();

}

class TableScan: Operator {
String tableName;

}

class Select: Operator {
Operator parent;
Expression condition;

}

class Project: Operator {
Operator parent;
Expression[] exprs;

}

CS 245 75

interface Expression {
Value compute(Tuple in);

}

class Attribute: Expression {
String name;

}

class Times: Expression {
Expression left, right;

}

class Equals: Expression {
Expression left, right;

}

Example Expression Classes

CS 245 76

class Attribute: Expression {
String name;

Value compute(Tuple in) {
return in.getField(name);

}
}

class Times: Expression {
Expression left, right;

Value compute(Tuple in) {
return left.compute(in) * right.compute(in);

}
}

probably better to use a
numeric field ID instead

Example Operator Classes

CS 245 77

class TableScan: Operator {
String tableName;

Tuple next() {
// read & return next record from file

}
}

class Project: Operator {
Operator parent;
Expression[] exprs;

Tuple next() {
tuple = parent.next();
fields = [expr.compute(tuple) for expr in exprs];
return new Tuple(fields);

}
}

Running Our Query with
Interpretation

CS 245 78

ops = Project(
expr = Times(Attr(“quantity”), Attr(“price”)),
parent = Select(
expr = Equals(Attr(“productId”), Literal(75)),
parent = TableScan(“orders”)

)
);

while(true) {
Tuple t = ops.next();
if (t != null) {
out.write(t);

} else {
break;

}
}

Pros & cons of this
approach?

recursively calls Operator.next()
and Expression.compute()

Method 2: Vectorization

Interpreting query plans one record at a time
is simple, but it’s too slow
» Lots of virtual function calls and branches for

each record (recall Jeff Dean’s numbers)

Keep recursive interpretation, but make
Operators and Expressions run on batches

CS 245 79

Implementing Vectorization

CS 245 80

class TupleBatch {
// Efficient storage, e.g.
// schema + column arrays

}

interface Operator {
TupleBatch next();

}

class Select: Operator {
Operator parent;
Expression condition;

}

...

class ValueBatch {
// Efficient storage

}

interface Expression {
ValueBatch compute(
TupleBatch in);

}

class Times: Expression {
Expression left, right;

}

...

Typical Implementation

Values stored in columnar arrays (e.g. int[])
with a separate bit array to mark nulls

Tuple batches fit in L1 or L2 cache

Operators use SIMD instructions to update
both values and null fields without branching

CS 245 81

Pros & Cons of Vectorization

+ Faster than record-at-a-time if the query
processes many records

+ Relatively simple to implement

– Lots of nulls in batches if query is selective

– Data travels between CPU & cache a lot

CS 245 82

Method 3: Compilation

Turn the query into executable code

CS 245 83

Compilation Example

Pquanity*price (σproductId=75 (orders))

class MyQuery {
void run() {

Iterator<OrdersTuple> in = openTable(“orders”);
for(OrdersTuple t: in) {

if (t.productId == 75) {
out.write(Tuple(t.quantity * t.price));

}
}

}
}

CS 245 84

generated class with the right
field types for orders table

Can also theoretically generate
vectorized code

Pros & Cons of Compilation

+ Potential to get fastest possible execution

+ Leverage existing work in compilers

– Complex to implement

– Compilation takes time

– Generated code may not match hand-written

CS 245 85

What’s Used Today?

Depends on context & other bottlenecks

Transactional databases (e.g. MySQL):
mostly record-at-a-time interpretation

Analytical systems (Vertica, Spark SQL):
vectorization, sometimes compilation

ML libs (TensorFlow): mostly vectorization
(the records are vectors!), some compilation

CS 245 86

