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From Last Time: Indexes

Conventional indexes

B-trees

Hash indexes

Multi-key indexing
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Hash Indexes

key h(key)

record / ptr

...

Buckets
(block sized)

Buckets can contain records or pointers to file

overflow
bucket

CS 245 3

Chaining is used to handle bucket overflow



Hash vs Tree Indexes

+ O(1) instead of O(log N) disk accesses

– Can’t efficiently do range queries
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Challenge: Resizing

Hash tables try to keep occupancy in a fixed 
range (50-80%) and slow down beyond that
» Too much chaining

How to resize the table when this happens?
» In memory: just move everything, amortized 

cost is pretty low
» On disk: moving everything is expensive!
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Extendible Hashing

Tree-like design for hash tables that allows 
cheap resizing while requiring 2 IOs / access
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Extendible Hashing: 2 Ideas

(a) Use i of b bits output by hash function
b

h(K) ®

i

i will grow over time; the first i bits of each 
key’s hash are used to map it to a bucket

00110101
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(b) Use a directory with pointers to buckets

h(K)[0..i] to bucket
...

...

Extendible Hashing: 2 Ideas
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Example: 4-bit h(K), 2 keys/bucket

i = 1
1

1

0001

1001
1100
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local depth
global depth

0010

Insert 0010



Example: 4-bit h(K), 2 keys/bucket

i = 1
1

1

0001

1001
1100

Insert 1010
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local depth
global depth



i = 1
1

1

0001

1001
1100

Insert 1010
1
1100

1010

Example: 4-bit h(K), 2 keys/bucket
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i = 1
1

1

0001

1001
1100

Insert 1010
1
1100

1010

New directory

2
00

01

10

11

i =

2

2

Example: 4-bit h(K), 2 keys/bucket
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1
0001

2
1001
1010
2
1100

Insert:

0111

0000

00

01

10

11

2i =

Example
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1
0001

2
1001
1010
2
1100

Insert:

0111

0000

00

01

10

11

2i =

0111

0000

0111

0001

Example
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1
0001

2
1001
1010
2
1100

Insert:

0111

0000

00

01

10

11

2i =

0111

0000

0111

0001

2

2Example
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00

01

10

11

2i =

21001
1010

21100

20111

20000
0001

Example

Note: still need 
chaining if values 
of h(K) repeat and 

fill a bucket
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Some Types of Indexes

Conventional indexes

B-trees

Hash indexes

Multi-key indexing
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Motivation 

Example: find records where

DEPT = “Toy” AND SALARY > 50k
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Strategy I:

Use one index, say Dept.

Get all Dept = “Toy” records
and check their salary

I1
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Strategy II:

Use 2 indexes; intersect lists of pointers

Toy Sal
> 50k
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Strategy III:

Multi-key index

One design:  

I1

I2

I3
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h

n
b

i a

co

de

g

f

m

l

k
j

k-d Trees
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Split dimensions in any order 
to hold k-dimensional data
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k-d Trees
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Efficient range 
queries in both 

dimensions
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k-d Trees



Storage System Examples

MySQL: transactional DBMS
» Row-oriented storage with 16 KB pages
» Variable length records with headers, overflow
» Index types:
• B-tree
•Hash (in memory only)
• R-tree (spatial data)
• Inverted lists for full text search

» Can compress pages with Lempel-Ziv
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Apache Parquet + Hive: analytical data lake
» Column-oriented storage as set of ~1 GB files 

(each file has a slice of all columns)
» Various compression and encoding schemes 

at the level of pages in a file
• Special scheme for nested fields (Dremel)

» Header with statistics at the start of each file
•Min/max of columns, nulls, Bloom filter

» Files partitioned into directories by one key
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Storage System Examples



Query Execution

Overview

Relational operators

Execution methods
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Query Execution Overview

Recall that one of our key principles in data 
intensive systems was declarative APIs
» Specify what you want to compute, not how

We saw how these can translate into many 
storage strategies

How to execute queries in a declarative API?
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Query Execution Overview

Query representation 
(e.g. SQL)

Logical query plan
(e.g. relational algebra)

Optimized logical plan

Physical plan
(code/operators to run)

Many execution 
methods: per-record 
exec, vectorization, 

compilation
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Plan Optimization Methods

Rule-based: systematically replace some 
expressions with other expressions
» Replace X OR TRUE with TRUE
» Replace M*A + M*B with M*(A+B) for matrices

Cost-based: propose several execution plans 
and pick best based on a cost model

Adaptive: update execution plan at runtime
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Execution Methods

Interpretation: walk through query plan 
operators for each record

Vectorization: walk through in batches

Compilation: generate code (like System R)
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parse

convert

apply rules

estimate result sizes

consider physical plans estimate costs

pick best

execute

{P1, P2, …}

{(P1,C1), (P2,C2), ...}

Pi

result

SQL query

parse tree

logical query plan

“improved” l.q.p

l.q.p. +sizes

statistics

Typical RDBMS Execution
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Query Execution

Overview

Relational operators

Execution methods
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The Relational Algebra

Collection of operators over tables (relations)
» Each table has named attributes (fields)

Codd’s original RA: tables are sets of tuples
(unordered and tuples cannot repeat)

SQL’s RA: tables are bags (multisets) of 
tuples; unordered but each tuple may repeat
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Relational Algebra Operators

Basic set operators:

Intersection: R ∩ S

Union: R ∪ S

Difference: R – S

Cartesian Product: R ⨯ S

for tables with same schema
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{ (r, s) | r ∈ R, s ∈ S }



Relational Algebra Operators

Basic set operators:

Intersection: R ∩ S

Union: R ∪ S

Difference: R – S

Cartesian Product: R ⨯ S

CS 245 40

consider both distinct (set union)
and non-distinct (bag union)



Relational Algebra Operators

Special query processing operators:

Selection: σcondition(R)

Projection: Pexpressions(R)

Natural Join: R ⨝ S

{ r ∈ R | condition(r) is true }

{ expressions(r) | r ∈ R }

{ (r, s) ∈ R ⨯ S) | r.key = s.key }
where key is the common fields
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Relational Algebra Operators

Special query processing operators:

Aggregation: keysGagg(attr)(R)

Examples: departmentGMax(salary)(Employees)

GMax(salary)(Employees)

SELECT agg(attr)
FROM R
GROUP BY keys
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Algebraic Properties

Many properties about which combinations 
of operators are equivalent
» That’s why it’s called an algebra!
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Properties: Unions, Products 
and Joins
R ∪ S = S ∪ R
R ∪ (S ∪ T) = (R ∪ S) ∪ T

R ⨯ S = S ⨯ R
(R ⨯ S) ⨯ T = R ⨯ (S ⨯ T)

R ⨝ S = S ⨝ R
(R ⨝ S) ⨝ T = R ⨝ (S ⨝ T) 
CS 245 44

Attribute order in a relation 
doesn’t matter either

Tuple order in a relation 
doesn’t matter (unordered)



Properties: Selects

σp∧q(R) =

σp∨q(R) =
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Properties: Selects

σp∧q(R) = σp(σq(R))

σp∨q(R) = σp(R) ∪ σq(R)
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careful with repeated elements



Bags vs. Sets

R = {a,a,b,b,b,c}

S = {b,b,c,c,d}

R ∪ S = ?
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Bags vs. Sets

R = {a,a,b,b,b,c}

S = {b,b,c,c,d}

R ∪ S = ?
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• Option 1: SUM of counts
R ∪ S = {a,a,b,b,b,b,b,c,c,c,d}

• Option 2: MAX of counts
R ∪ S = {a,a,b,b,b,c,c,d}



Executive Decision

Use “SUM” option for bag unions

Some rules that work for set unions cannot 
be used for bags
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Let: X = set of attributes
Y = set of attributes

PX∪Y (R) = 

Properties: Project
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Let: X = set of attributes
Y = set of attributes

PX∪Y (R) = PX(PY(R))

Properties: Project
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Let: X = set of attributes
Y = set of attributes

PX∪Y (R) = PX(PY(R))

Properties: Project
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Properties: σ + ⨝

Let p = predicate with only R attribs

q = predicate with only S attribs

m = predicate with only R, S attribs

σp(R ⨝ S) = 

σq(R ⨝ S) =   
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Properties: σ + ⨝

Let p = predicate with only R attribs

q = predicate with only S attribs

m = predicate with only R, S attribs

σp(R ⨝ S) = σp(R) ⨝ S

σq(R ⨝ S) = R ⨝ σq(S)
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Properties: σ + ⨝

Some rules can be derived:

σp∧q(R ⨝ S) =

σp∧q∧m(R ⨝ S) =

σp∨q(R ⨝ S) =
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Properties: σ + ⨝

Some rules can be derived:

σp∧q(R ⨝ S) = σp(R) ⨝ σq(S) 

σp∧q∧m(R ⨝ S) = σm(σp(R) ⨝ σq(S))

σp∨q(R ⨝ S) = (σp(R) ⨝ S) ∪ (R ⨝ σq(S))
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Prove One, Others for Practice

σp∧q(R ⨝ S)  =  σp (σq(R ⨝ S))

=  σp (R ⨝ σq(S))

=  σp (R) ⨝ σq(S)
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Properties: P + σ

Let x = subset of R attributes

z = attributes in predicate p
(subset of R attributes)

Px(σp (R)) =
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Properties: P + σ

Let x = subset of R attributes

z = attributes in predicate p
(subset of R attributes)

Px(σp (R)) = σp(Px(R)) 

CS 245 59



Properties: P + σ

Let x = subset of R attributes

z = attributes in predicate p
(subset of R attributes)

Px(σp (R)) = Px(σp(Px∪z(R)))
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Let x = subset of R attributes
y = subset of S attributes
z = intersection of R,S attributes

Px∪y(R ⨝ S)  = Px∪y ((Px∪z (R)) ⨝ (Py∪z (S))) 
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Properties: P + ⨝



parse

convert

apply rules

estimate result sizes

consider physical plans estimate costs

pick best

execute

{P1, P2, …}

{(P1,C1), (P2,C2), ...}

Pi

result

SQL query

parse tree

logical query plan

“improved” l.q.p

l.q.p. +sizes

statistics

Typical RDBMS Execution
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Example SQL Query

SELECT title
FROM StarsIn
WHERE starName IN (

SELECT name
FROM MovieStar
WHERE birthdate LIKE ‘%1960’

);

(Find the movies with stars born in 1960)
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Parse Tree <Query>

<SFW>

SELECT   <SelList>    FROM    <FromList>     WHERE     <Condition>

<Attribute>              <RelName>                 <Tuple>  IN  <Query>

title                       StarsIn               <Attribute>      (  <Query>  )

starName       <SFW>

SELECT      <SelList>    FROM     <FromList>     WHERE     <Condition>

<Attribute>           <RelName>         <Attribute>  LIKE  <Pattern>

name                 MovieStar              birthDate            ‘%1960’
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Ptitle

sstarName=name

StarsIn       Pname             

sbirthdate LIKE ‘%1960’

MovieStar

´

Logical Query Plan

CS 245 65



Improved Logical Query Plan

Ptitle

starName=name

StarsIn       Pname             

sbirthdate LIKE ‘%1960’

MovieStar

Question:
Push Ptitle
to StarsIn?

CS 245 66



Need expected size

StarsIn

MovieStar              

P

s

Estimate Result Sizes
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Parameters: join order,
memory size, project attributes, ...Hash join

Seq scan Index scan Parameters:
select condition, ...

StarsIn MovieStar

One Physical Plan

H
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Parameters: join order,
memory size, project attributes, ...Hash join

Index scan Seq scan Parameters:
select condition, ...

StarsIn MovieStar

Another Physical Plan

H
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Sort-merge join

Seq scan Seq scan

StarsIn MovieStar

Another Physical Plan

CS 245 70

Which plan is likely to be better?



Logical plan

P1 P2 … Pn

C1 C2 … Cn

Pick best!

Estimating Plan Costs

Physical plan
candidates

CS 245 71

Covered in next few lectures!



Query Execution

Overview

Relational operators

Execution methods
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Now That We Have a Plan, 
How Do We Run it?

Several different options that trade between 
complexity, setup time & performance
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Example: Simple Query

SELECT quantity * price
FROM orders
WHERE productId = 75

Pquanity*price (σproductId=75 (orders))
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Method 1: Interpretation
interface Operator {
Tuple next();

}

class TableScan: Operator {
String tableName;

}

class Select: Operator {
Operator parent;
Expression condition;

}

class Project: Operator {
Operator parent;
Expression[] exprs;

}

CS 245 75

interface Expression {
Value compute(Tuple in);

}

class Attribute: Expression {
String name;

}

class Times: Expression {
Expression left, right;

}

class Equals: Expression {
Expression left, right;

}



Example Expression Classes
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class Attribute: Expression {
String name;

Value compute(Tuple in) {
return in.getField(name);

}
}

class Times: Expression {
Expression left, right;

Value compute(Tuple in) {
return left.compute(in) * right.compute(in);

}
}

probably better to use a
numeric field ID instead



Example Operator Classes
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class TableScan: Operator {
String tableName;

Tuple next() {
// read & return next record from file

}
}

class Project: Operator {
Operator parent;
Expression[] exprs;

Tuple next() {
tuple = parent.next();
fields = [expr.compute(tuple) for expr in exprs];
return new Tuple(fields);

}
}



Running Our Query with 
Interpretation
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ops = Project(
expr = Times(Attr(“quantity”), Attr(“price”)),
parent = Select(
expr = Equals(Attr(“productId”), Literal(75)),
parent = TableScan(“orders”)

)
);

while(true) {
Tuple t = ops.next();
if (t != null) {
out.write(t);

} else {
break;

}
}

Pros & cons of this 
approach?

recursively calls Operator.next()
and Expression.compute()



Method 2: Vectorization

Interpreting query plans one record at a time 
is simple, but it’s too slow
» Lots of virtual function calls and branches for 

each record (recall Jeff Dean’s numbers)

Keep recursive interpretation, but make 
Operators and Expressions run on batches
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Implementing Vectorization
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class TupleBatch {
// Efficient storage, e.g.
// schema + column arrays

}

interface Operator {
TupleBatch next();

}

class Select: Operator {
Operator parent;
Expression condition;

}

...

class ValueBatch {
// Efficient storage

}

interface Expression {
ValueBatch compute(
TupleBatch in);

}

class Times: Expression {
Expression left, right;

}

...



Typical Implementation

Values stored in columnar arrays (e.g. int[]) 
with a separate bit array to mark nulls

Tuple batches fit in L1 or L2 cache

Operators use SIMD instructions to update 
both values and null fields without branching
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Pros & Cons of Vectorization

+ Faster than record-at-a-time if the query
processes many records

+ Relatively simple to implement

– Lots of nulls in batches if query is selective

– Data travels between CPU & cache a lot
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Method 3: Compilation

Turn the query into executable code
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Compilation Example

Pquanity*price (σproductId=75 (orders))

class MyQuery {
void run() {

Iterator<OrdersTuple> in = openTable(“orders”);
for(OrdersTuple t: in) {

if (t.productId == 75) {
out.write(Tuple(t.quantity * t.price));

}
}

}
}
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generated class with the right
field types for orders table

Can also theoretically generate 
vectorized code



Pros & Cons of Compilation

+ Potential to get fastest possible execution

+ Leverage existing work in compilers

– Complex to implement

– Compilation takes time

– Generated code may not match hand-written
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What’s Used Today?

Depends on context & other bottlenecks

Transactional databases (e.g. MySQL):
mostly record-at-a-time interpretation

Analytical systems (Vertica, Spark SQL):
vectorization, sometimes compilation

ML libs (TensorFlow): mostly vectorization 
(the records are vectors!), some compilation
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