Indexes Part 2 and Query Execution

Instructor: Matei Zaharia

cs245.stanford.edu

From Last Time: Indexes

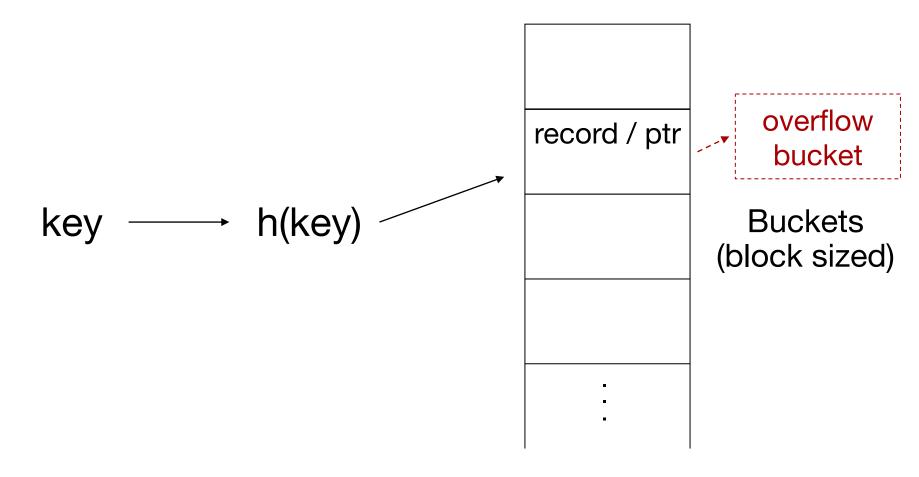
Conventional indexes

B-trees

Hash indexes

Multi-key indexing

Hash Indexes



Chaining is used to handle bucket overflow

Hash vs Tree Indexes

- + O(1) instead of O(log N) disk accesses
- Can't efficiently do range queries

Challenge: Resizing

Hash tables try to keep occupancy in a fixed range (50-80%) and slow down beyond that

» Too much chaining

How to resize the table when this happens?

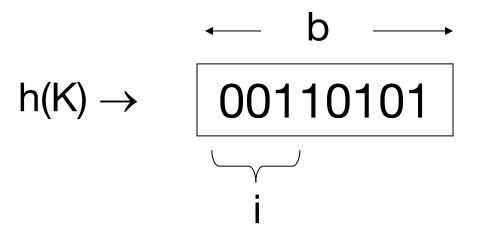
- » In memory: just move everything, amortized cost is pretty low
- » On disk: moving everything is expensive!

Extendible Hashing

Tree-like design for hash tables that allows cheap resizing while requiring 2 IOs / access

Extendible Hashing: 2 Ideas

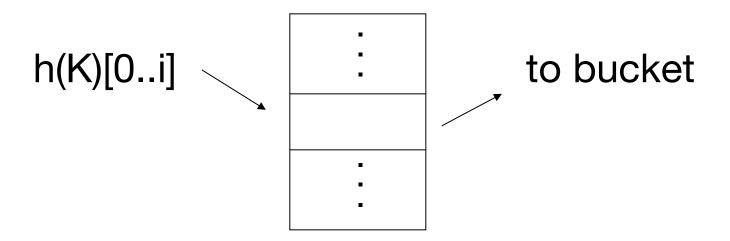
(a) Use i of b bits output by hash function

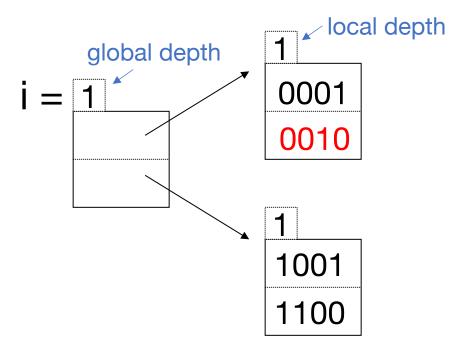


i will grow over time; the first i bits of each key's hash are used to map it to a bucket

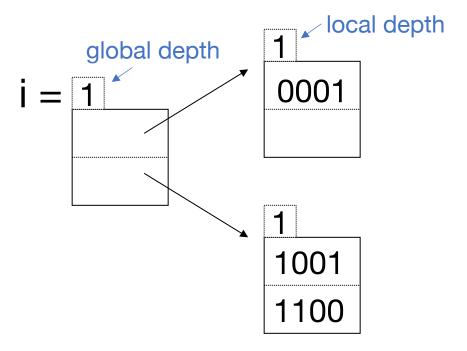
Extendible Hashing: 2 Ideas

(b) Use a directory with pointers to buckets

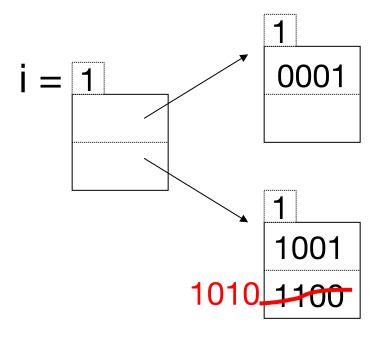




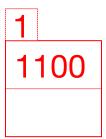
Insert 0010

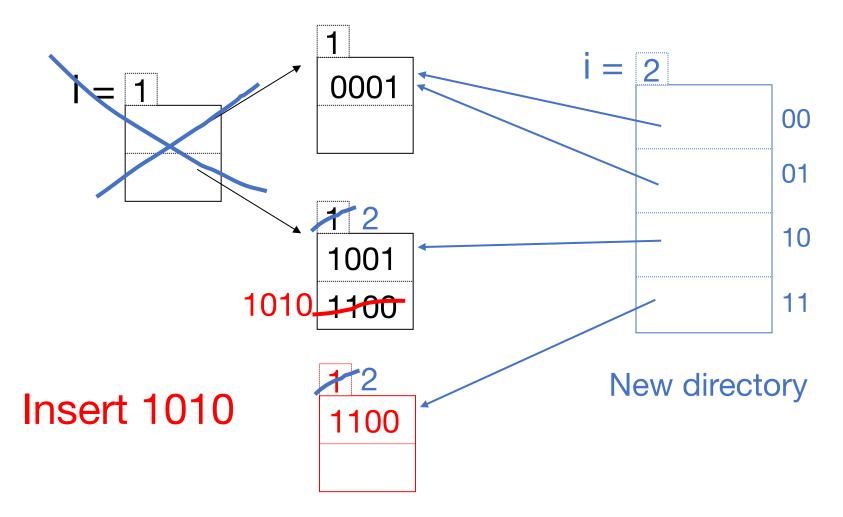


Insert 1010

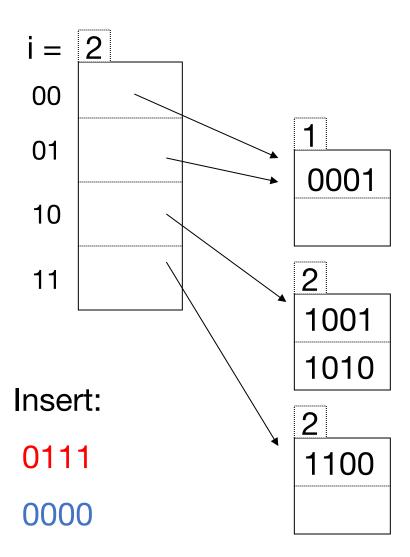


Insert 1010



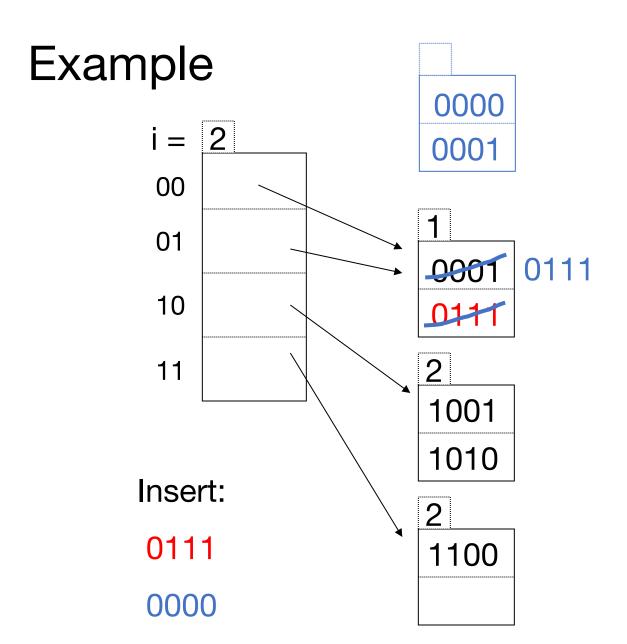


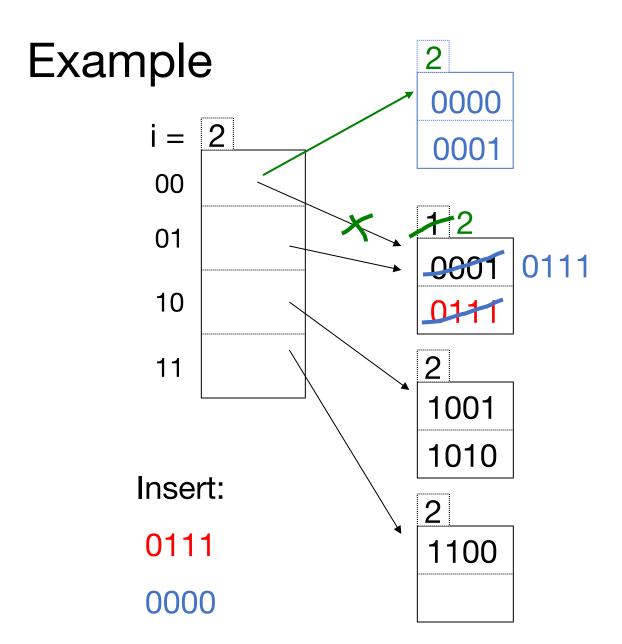
Example

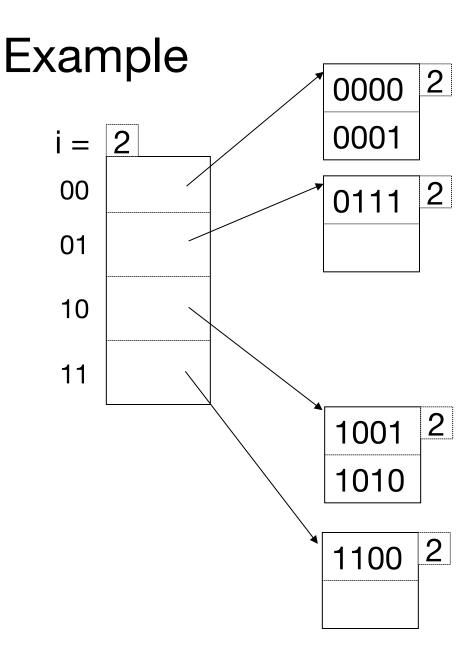


CS 245

13







Note: still need chaining if values of h(K) repeat and fill a bucket

CS 245

16

Some Types of Indexes

Conventional indexes

B-trees

Hash indexes

Multi-key indexing

Motivation

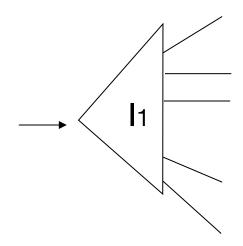
Example: find records where

DEPT = "Toy" AND SALARY > 50k

Strategy I:

Use one index, say Dept.

Get all Dept = "Toy" records and check their salary

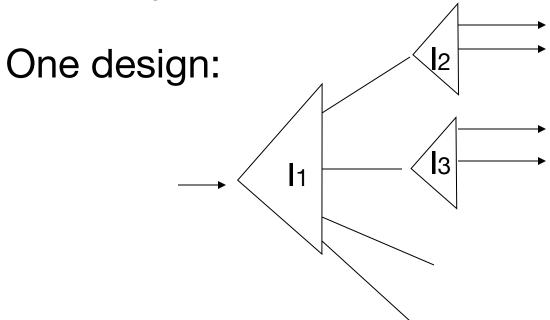


Strategy II:

Use 2 indexes; intersect lists of pointers

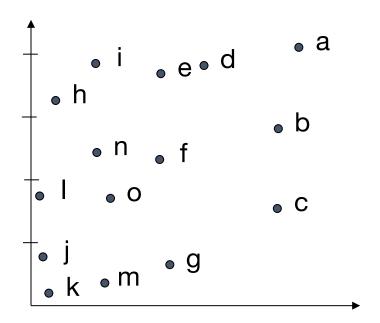
Strategy III:

Multi-key index

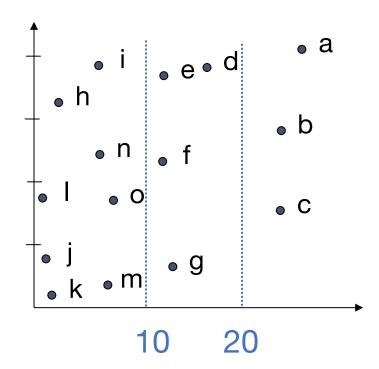


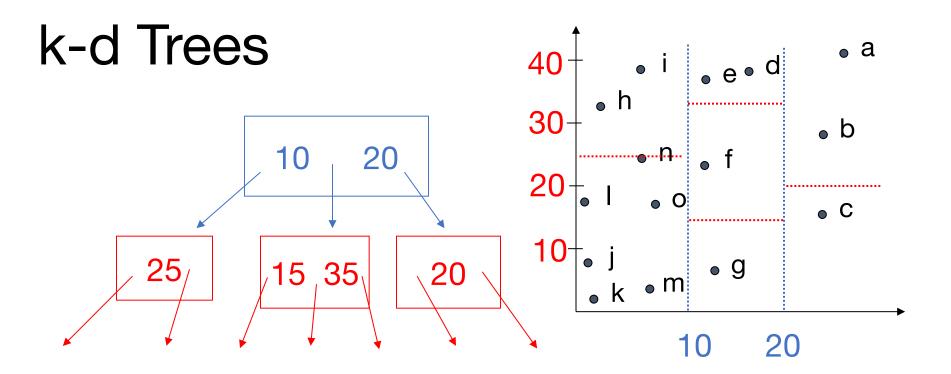
k-d Trees

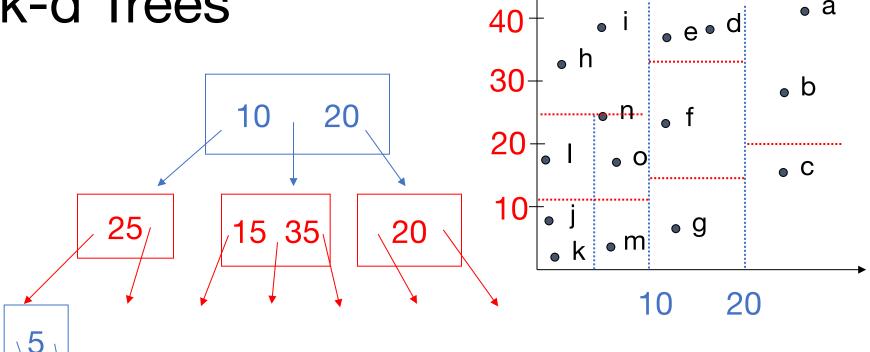
Split dimensions in any order to hold k-dimensional data

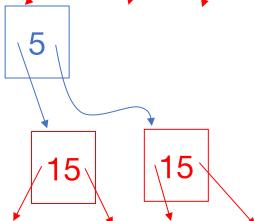


k-d Trees



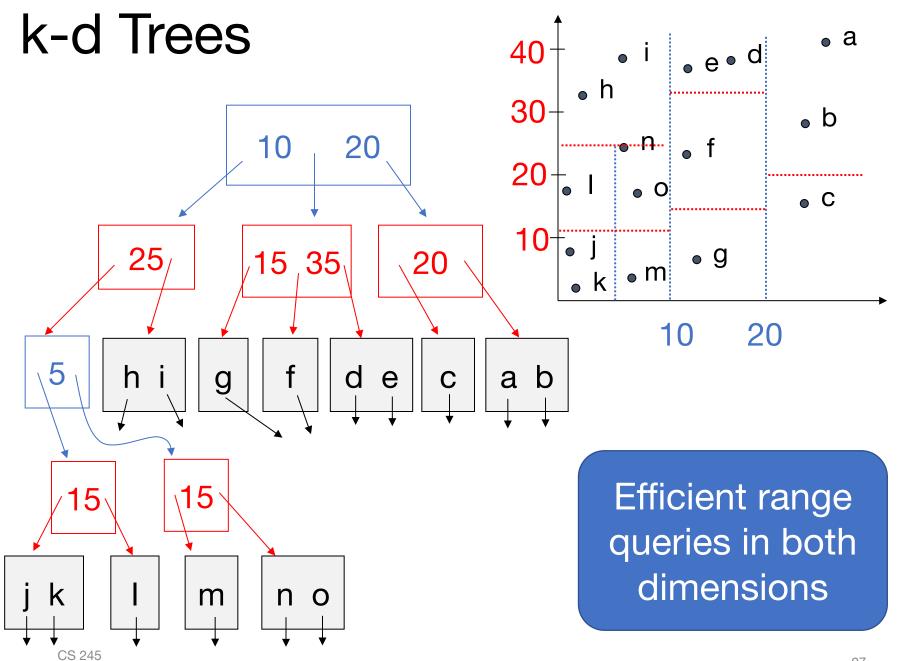






CS 245

26



Storage System Examples

MySQL: transactional DBMS

- » Row-oriented storage with 16 KB pages
- » Variable length records with headers, overflow
- » Index types:
 - B-tree
 - Hash (in memory only)
 - R-tree (spatial data)
 - Inverted lists for full text search
- » Can compress pages with Lempel-Ziv

Storage System Examples

Apache Parquet + Hive: analytical data lake

- » Column-oriented storage as set of ~1 GB files (each file has a slice of all columns)
- » Various compression and encoding schemes at the level of pages in a file
 - Special scheme for nested fields (Dremel)
- » Header with statistics at the start of each file
 - Min/max of columns, nulls, Bloom filter
- » Files partitioned into directories by one key

Query Execution

Overview

Relational operators

Execution methods

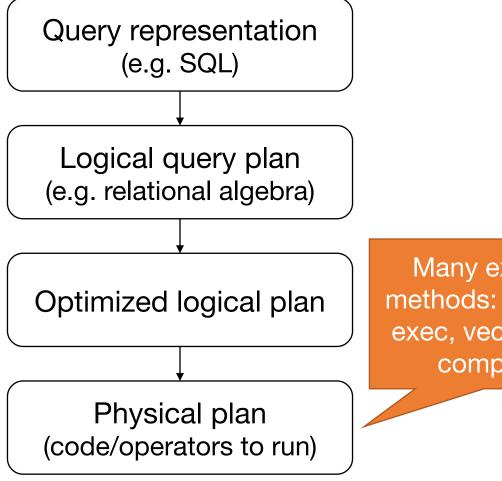
Query Execution Overview

Recall that one of our key principles in data intensive systems was **declarative APIs**» Specify what you want to compute, not how

We saw how these can translate into many storage strategies

How to execute queries in a declarative API?

Query Execution Overview



Many execution methods: per-record exec, vectorization, compilation

Plan Optimization Methods

Rule-based: systematically replace some expressions with other expressions

- » Replace X OR TRUE with TRUE
- » Replace M*A + M*B with M*(A+B) for matrices

Cost-based: propose several execution plans and pick best based on a cost model

Adaptive: update execution plan at runtime

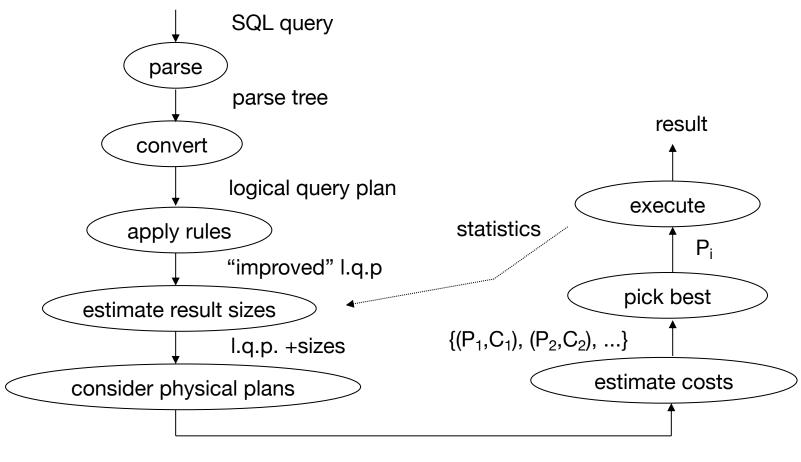
Execution Methods

Interpretation: walk through query plan operators for each record

Vectorization: walk through in batches

Compilation: generate code (like System R)

Typical RDBMS Execution



 $\{P_1, P_2, ...\}$

Query Execution

Overview

Relational operators

Execution methods

The Relational Algebra

Collection of operators over tables (relations) » Each table has named attributes (fields)

Codd's original RA: tables are **sets of tuples** (unordered and tuples cannot repeat)

SQL's RA: tables are **bags** (multisets) of **tuples**; unordered but each tuple may repeat

Basic set operators:

Intersection: R ∩ S

Union: R∪S

Difference: R - S

for tables with same schema

Cartesian Product: $R \times S \{ (r, s) | r \in R, s \in S \}$

Basic set operators:

Intersection: R ∩ S

Union: R ∪ S ← consider both distinct (set union) and non-distinct (bag union)

Difference: R – S

Cartesian Product: R × S

Special query processing operators:

```
Selection: \sigma_{condition}(R) { r \in R \mid condition(r) \text{ is true }}
```

```
Projection: \Pi_{\text{expressions}}(R) { expressions(r) | r ∈ R }
```

Natural Join: $R \bowtie S$ { $(r, s) \in R \times S) \mid r.key = s.key } where key is the common fields$

Special query processing operators:

Aggregation: keys Gagg(attr)(R)

SELECT agg(attr) FROM R GROUP BY keys

Examples: department G_{Max(salary)} (Employees)

G_{Max(salary)}(Employees)

Algebraic Properties

Many properties about which combinations of operators are equivalent

» That's why it's called an algebra!

Properties: Unions, Products and Joins

$$R \cup S = S \cup R$$

 $R \cup (S \cup T) = (R \cup S) \cup T$

doesn't matter either

Tuple order in a relation

doesn't matter (unordered)

$$R \times S = S \times R$$

 $(R \times S) \times T = R \times (S \times T)$

$$R \bowtie S = S \bowtie R$$

 $(R \bowtie S) \bowtie T = R \bowtie (S \bowtie T)$

Properties: Selects

$$\sigma_{p \wedge q}(R) =$$

$$\sigma_{pvq}(R) =$$

Properties: Selects

$$\sigma_{p \wedge q}(R) = \sigma_p(\sigma_q(R))$$

$$\sigma_{p \vee q}(R) = \sigma_p(R) \cup \sigma_q(R)$$

careful with repeated elements

Bags vs. Sets

 $R = \{a,a,b,b,b,c\}$

 $S = \{b,b,c,c,d\}$

 $R \cup S = ?$

Bags vs. Sets

```
R = \{a,a,b,b,b,c\}
S = \{b,b,c,c,d\}
R \cup S = ?
```

- Option 1: SUM of counts
 R U S = {a,a,b,b,b,b,c,c,c,d}
- Option 2: MAX of counts
 R ∪ S = {a,a,b,b,b,c,c,d}

Executive Decision

Use "SUM" option for bag unions

Some rules that work for set unions cannot be used for bags

Properties: Project

Let: X = set of attributes

Y = set of attributes

$$\Pi_{X \cup Y}$$
 (R) =

Properties: Project

Let: X = set of attributes

Y = set of attributes

$$\Pi_{X \cup Y}(R) = \Pi_X(\Pi_Y(R))$$

Properties: Project

Let: X = set of attributes

Y = set of attributes

$$\Pi_{X \cup Y}(R) = \Pi_X(R_X(R))$$

Let p = predicate with only R attribs

q = predicate with only S attribs

m = predicate with only R, S attribs

$$\sigma_{p}(R \bowtie S) =$$

$$\sigma_{q}(R \bowtie S) =$$

Let p = predicate with only R attribs

q = predicate with only S attribs

m = predicate with only R, S attribs

$$\sigma_p(R \bowtie S) = \sigma_p(R) \bowtie S$$

$$\sigma_{q}(R \bowtie S) = R \bowtie \sigma_{q}(S)$$

Some rules can be derived:

$$\sigma_{p \wedge q}(R \bowtie S) =$$

$$\sigma_{p \land q \land m}(R \bowtie S) =$$

$$\sigma_{pvq}(R \bowtie S) =$$

Some rules can be derived:

$$\sigma_{p \wedge q}(R \bowtie S) = \sigma_p(R) \bowtie \sigma_q(S)$$

$$\sigma_{p \land q \land m}(R \bowtie S) = \sigma_m(\sigma_p(R) \bowtie \sigma_q(S))$$

$$\sigma_{p\vee q}(R\bowtie S)=(\sigma_p(R)\bowtie S)\cup (R\bowtie \sigma_q(S))$$

Prove One, Others for Practice

$$\sigma_{p \wedge q}(R \bowtie S) = \sigma_{p} (\sigma_{q}(R \bowtie S))$$

$$= \sigma_{p} (R \bowtie \sigma_{q}(S))$$

$$= \sigma_{p} (R) \bowtie \sigma_{q}(S)$$

Properties: $\Pi + \sigma$

Let x =subset of R attributes

z = attributes in predicate p (subset of R attributes)

$$\Pi_{x}(\sigma_{p}(R)) =$$

Properties: $\Pi + \sigma$

Let x =subset of R attributes

z = attributes in predicate p (subset of R attributes)

$$\Pi_{x}(\sigma_{p}(R)) = \sigma_{p}(\Pi_{x}(R))$$

Properties: $\Pi + \sigma$

Let x =subset of R attributes

z = attributes in predicate p (subset of R attributes)

$$\Pi_{x}(\sigma_{p}(R)) = \Pi_{x}(\sigma_{p}(\Pi_{x \cup z}(R)))$$

Let x =subset of R attributes

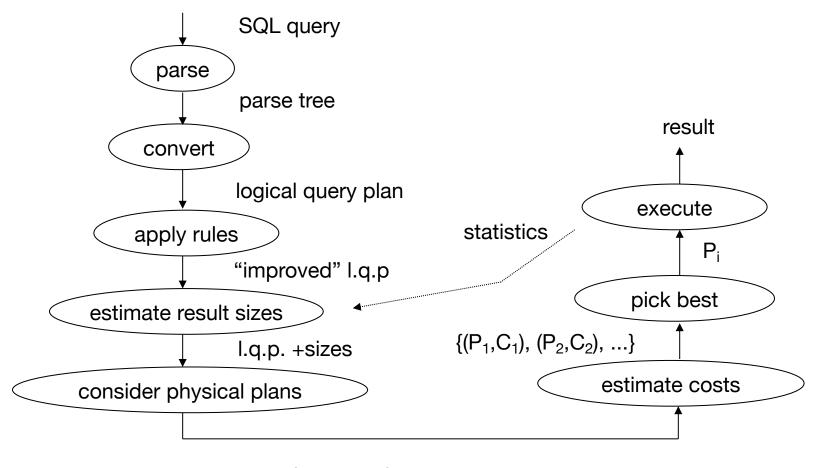
y = subset of S attributes

z = intersection of R,S attributes

$$\Pi_{x \cup y}(R \bowtie S) = \Pi_{x \cup y}((\Pi_{x \cup z}(R)) \bowtie (\Pi_{y \cup z}(S)))$$

61

Typical RDBMS Execution



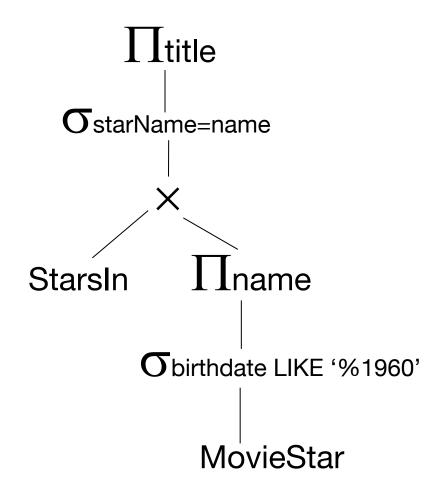
 $\{P_1, P_2, ...\}$

Example SQL Query

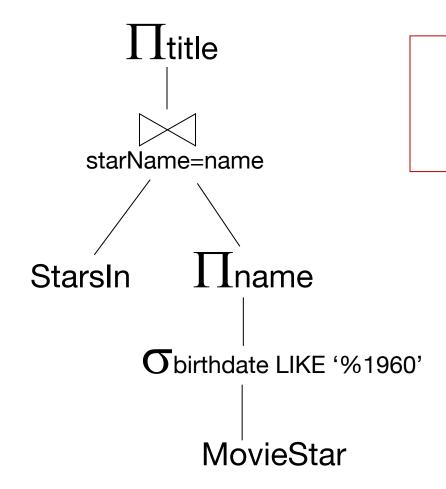
(Find the movies with stars born in 1960)

Parse Tree <Query> <SFW> WHERE FROM <FromList> <Condition> SELECT <SelList> <Tuple> IN <Query> <RelName> <Attribute> title StarsIn <Attribute> (<Query>) starName ≤SFW> FROM <FromList> <SelList> WHERE SELECT <Condition> <Attribute> LIKE <Pattern> <RelName> <Attribute> MovieStar birthDate **'%1960'** name

Logical Query Plan



Improved Logical Query Plan



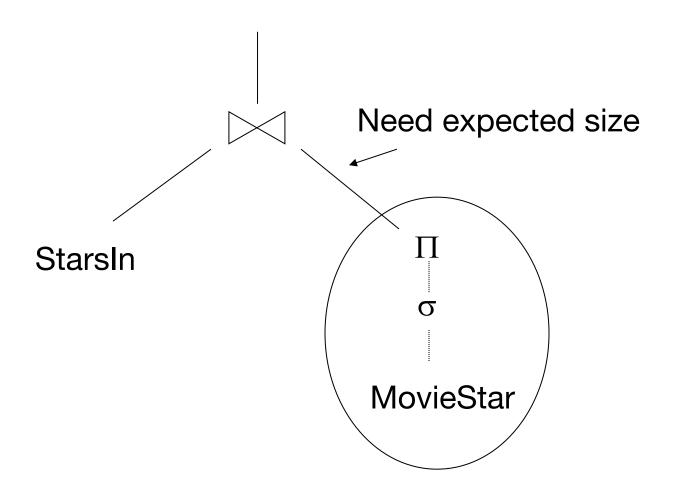
CS 245

Question:

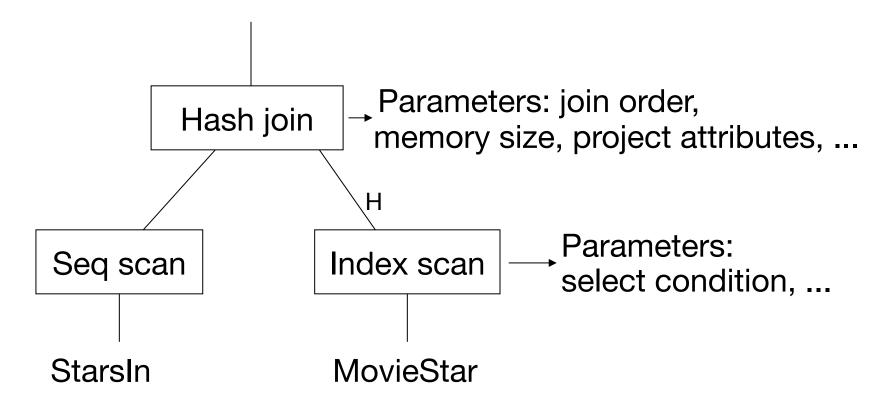
Push Π_{title}

to StarsIn?

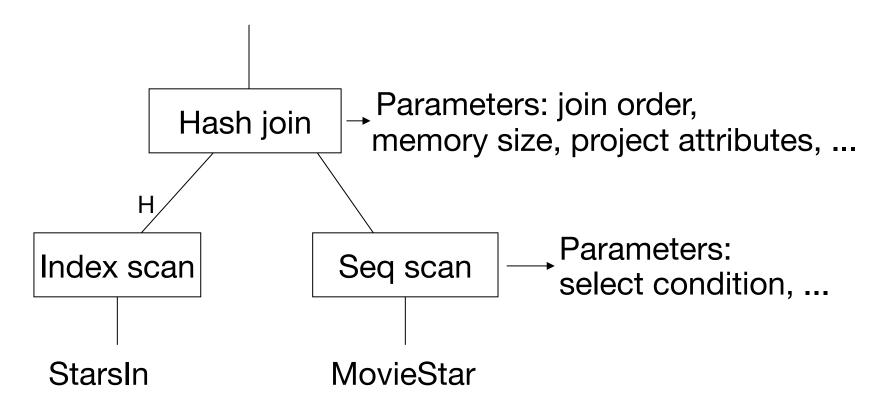
Estimate Result Sizes



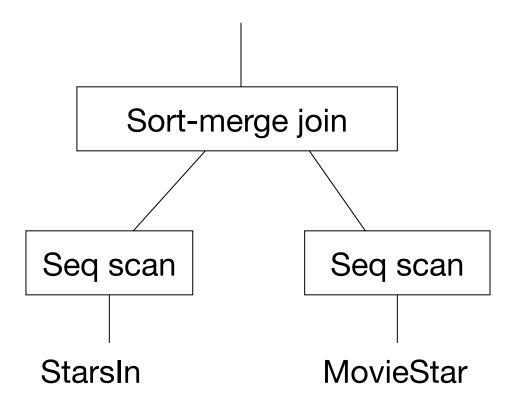
One Physical Plan



Another Physical Plan

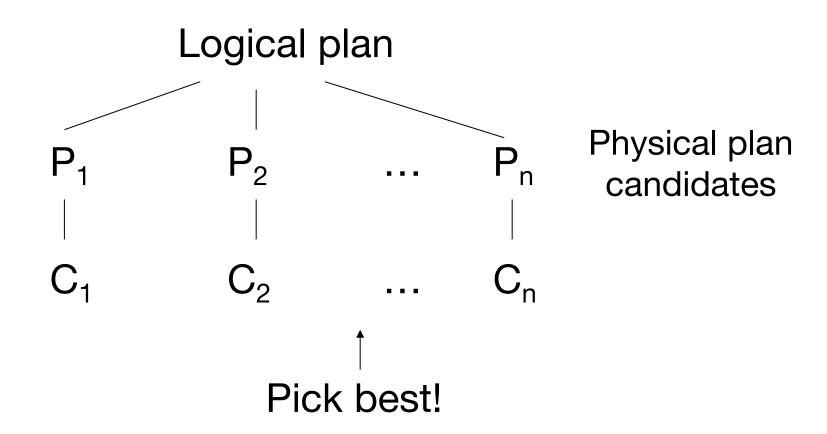


Another Physical Plan



Which plan is likely to be better?

Estimating Plan Costs



Covered in next few lectures!

US 27

Query Execution

Overview

Relational operators

Execution methods

Now That We Have a Plan, How Do We Run it?

Several different options that trade between complexity, setup time & performance

Example: Simple Query

```
SELECT quantity * price
FROM orders
WHERE productId = 75
```

$$\Pi_{\text{quanity*price}} (\sigma_{\text{productId=75}} (\text{orders}))$$

Method 1: Interpretation

```
interface Expression {
interface Operator {
                                  Value compute(Tuple in);
  Tuple next();
                                class Attribute: Expression {
class TableScan: Operator {
 String tableName;
                                  String name;
                                class Times: Expression {
class Select: Operator {
                                  Expression left, right;
 Operator parent;
  Expression condition;
                                class Equals: Expression {
                                  Expression left, right;
class Project: Operator {
 Operator parent;
  Expression[] exprs;
```

Example Expression Classes

```
class Attribute: Expression {
                                   probably better to use a
  String name;
                                   numeric field ID instead
 Value compute(Tuple in) {
    return in.getField(name);
class Times: Expression {
  Expression left, right;
 Value compute(Tuple in) {
    return left.compute(in) * right.compute(in);
```

Example Operator Classes

```
class TableScan: Operator {
 String tableName;
 Tuple next() {
    // read & return next record from file
class Project: Operator {
 Operator parent;
 Expression[] exprs;
 Tuple next() {
    tuple = parent.next();
    fields = [expr.compute(tuple) for expr in exprs];
    return new Tuple(fields);
```

Running Our Query with Interpretation

```
ops = Project(
       expr = Times(Attr("quantity"), Attr("price")),
       parent = Select(
         expr = Equals(Attr("productId"), Literal(75)),
         parent = TableScan("orders")
                           recursively calls Operator.next()
while(true) {
                           and Expression.compute()
  Tuple t = ops.next();
  if (t != null) {
   out.write(t);
  } else {
                                  Pros & cons of this
   break;
                                       approach?
```

Method 2: Vectorization

Interpreting query plans one record at a time is simple, but it's too slow

» Lots of virtual function calls and branches for each record (recall Jeff Dean's numbers)

Keep recursive interpretation, but make Operators and Expressions run on **batches**

Implementing Vectorization

```
class ValueBatch {
class TupleBatch {
  // Efficient storage, e.g.
                                  // Efficient storage
  // schema + column arrays
                                interface Expression {
                                  ValueBatch compute(
interface Operator {
                                    TupleBatch in);
  TupleBatch next();
class Select: Operator {
                                class Times: Expression {
                                  Expression left, right;
  Operator parent;
  Expression condition;
```

Typical Implementation

Values stored in columnar arrays (e.g. int[]) with a separate bit array to mark nulls

Tuple batches fit in L1 or L2 cache

Operators use SIMD instructions to update both values and null fields without branching

Pros & Cons of Vectorization

- + Faster than record-at-a-time if the query processes many records
- + Relatively simple to implement
- Lots of nulls in batches if query is selective
- Data travels between CPU & cache a lot

Method 3: Compilation

Turn the query into executable code

Compilation Example

 $\Pi_{\text{quanity*price}} (\sigma_{\text{productId=75}} (\text{orders}))$

```
generated class with the right
class MyQuery {
    void run() {
        Iterator<OrdersTuple> in = openTable("orders");
        for(OrdersTuple t: in) {
            if (t.productId == 75) {
                out.write(Tuple(t.quantity * t.price));
            }
        }
    }
}
```

Can also theoretically generate vectorized code

Pros & Cons of Compilation

- + Potential to get fastest possible execution
- + Leverage existing work in compilers
- Complex to implement
- Compilation takes time
- Generated code may not match hand-written

What's Used Today?

Depends on context & other bottlenecks

Transactional databases (e.g. MySQL): mostly record-at-a-time interpretation

Analytical systems (Vertica, Spark SQL): vectorization, sometimes compilation

ML libs (TensorFlow): mostly vectorization (the records are vectors!), some compilation