
CS 245: Principles of
Data-Intensive Systems

Instructor: Matei Zaharia
cs245.stanford.edu

https://cs245.stanford.edu/

My Background

PhD in 2013

CS 245 2

Open source distributed data
processing framework

Data & ML platform startup

Research in systems for ML

Outline

Why study data-intensive systems?

Course logistics

Key issues and themes

A bit of history

3CS 245

Why Study
Data-Intensive Systems?

Most important computer applications must
manage, update and query datasets
» Bank, store, fleet controller, search app, …

Data quality, quantity & timeliness becoming
even more important with AI
» Machine learning = algorithms that generalize

from data

4CS 245

What Are Data-Intensive
Systems?
Relational databases: most popular type of
data-intensive system (MySQL, Oracle, etc)

Many systems facing similar concerns:
message queues, key-value stores, streaming
systems, ML frameworks, your custom app?

CS 245 5

Goal: learn the main issues and principles that
span all data-intensive systems

Typical System Challenges

Reliability in the face of hardware crashes,
bugs, bad user input, etc

Concurrency: access by multiple users

Performance: throughput, latency, etc

Access interface from many, changing apps

Security and data privacy

CS 245 6

Practical Benefits of Studying
These Systems
Learn how to select & tune data systems

Learn how to build them

Learn how to build apps that have to tackle
some of these same challenges
» E.g. cross-geographic-region billing app,

custom search engine, etc

CS 245 7

Scientific Interest

Interesting algorithmic and design ideas

In many ways, data systems are the highest-
level successful programming abstractions

CS 245 8

Programming: The Dream

CS 245 9

∀𝑖 #
!∈#!∪%!

𝜆𝑥. 𝑥&(…)

Working application

High-level spec

Programming: The Dream

CS 245 10

∀𝑖 #
!∈#!∪%!

𝜆𝑥. 𝑥&(…)

Working application

High-level spec

Programming: The Reality

CS 245 11

Programming with Databases

CS 245 12

Relational
algebra

Actually manages:
• Durability
• Concurrency
• Query optimization
• Security
• …

High-level spec

Outline

Why study data-intensive systems?

Course logistics

Key issues and themes

A bit of history

13CS 245

Teaching Assistants

CS 245 14

Cody Coleman Xinyi YuDaniel Kang

Gina Yuan Peter Kraft

Course Format

Lectures in class

Optional textbook

Assigned paper readings (Q&A in class)

3 programming assignments

2 take-home, open-book tests

CS 245 15

Optional Textbook

Database Systems:
The Complete Book

Chapters 13-20

By the original Stanford
InfoLab group (Hector
Garcia-Molina, Jeff
Ullman, Jennifer Widom)

CS 245 16

Paper Readings

A few classic or recent research papers

Read the papers before class: we want to
discuss it together!

We’ll post discussion questions on the class
website 2-3 weeks before lecture

CS 245 17

How Should You Read a Paper?

Read: “How to Read a Paper”

TLDR: don’t just
scan end-to-end;
focus on key ideas
and sections

CS 245 18

Our First Paper

We’ll be reading part of “A History and
Evaluation of System R” for next class!

Find instructions and questions on website

CS 245 19

Programming Assignments

Three assignments implemented in Java or
Scala, and submitted online

1. Storage and access methods
2. Query optimization
3. Transactions and recovery

Done individually; A1 posted next week

CS 245 20

Midterm and Final

Written tests based on material covered in
lectures, assignments and readings

Final will cover the entire course but focus
on the second half

CS 245 21

Grading

54% Assignments (18% each)

20% Test 1

26% Test 2

CS 245 22

Keeping in Touch

Sign up for Piazza on the course website
to receive announcements!

cs245.stanford.edu

CS 245 23

http://cs245.stanford.edu/

Outline

Why study data-intensive systems?

Course logistics

Key issues and themes

A bit of history

24CS 245

Recall: Examples of
Data-Intensive Systems
Relational databases: most popular type of
data-intensive system (MySQL, Oracle, etc)

Many systems facing similar concerns:
message queues, key-value stores, streaming
systems, ML frameworks, your custom app?

CS 245 25

Basic Components

CS 245 26

Logical dataset
(e.g. table, graph)

Data
mgmt.
system Physical storage

(data structures)

Administrator

Clients / users

Queries

Examples
System Logical

Data Model Physical Storage API Other Features

Relational
databases

Relations
(i.e. tables)

B-trees, column
stores, indexes,
…

SQL, ODBC Durability,
transactions,
query planning,
migrations, …

CS 245 27

Examples
System Logical

Data Model Physical Storage API Other Features

Relational
databases

Relations
(i.e. tables)

B-trees, column
stores, indexes,
…

SQL, ODBC Durability,
transactions,
query planning,
migrations, …

TensorFlow

CS 245 28

Examples
System Logical

Data Model Physical Storage API Other Features

Relational
databases

Relations
(i.e. tables)

B-trees, column
stores, indexes,
…

SQL, ODBC Durability,
transactions,
query planning,
migrations, …

TensorFlow Tensors

CS 245 29

Examples
System Logical

Data Model Physical Storage API Other Features

Relational
databases

Relations
(i.e. tables)

B-trees, column
stores, indexes,
…

SQL, ODBC Durability,
transactions,
query planning,
migrations, …

TensorFlow Tensors NCHW, NHWC,
sparse arrays, …

CS 245 30

Examples
System Logical

Data Model Physical Storage API Other Features

Relational
databases

Relations
(i.e. tables)

B-trees, column
stores, indexes,
…

SQL, ODBC Durability,
transactions,
query planning,
migrations, …

TensorFlow Tensors NCHW, NHWC,
sparse arrays, …

Python DAG
construction

CS 245 31

Examples
System Logical

Data Model Physical Storage API Other Features

Relational
databases

Relations
(i.e. tables)

B-trees, column
stores, indexes,
…

SQL, ODBC Durability,
transactions,
query planning,
migrations, …

TensorFlow Tensors NCHW, NHWC,
sparse arrays, …

Python DAG
construction

query planning,
distribution,
specialized HW

CS 245 32

Examples
System Logical

Data Model Physical Storage API Other Features

Relational
databases

Relations
(i.e. tables)

B-trees, column
stores, indexes,
…

SQL, ODBC Durability,
transactions,
query planning,
migrations, …

TensorFlow Tensors NCHW, NHWC,
sparse arrays, …

Python DAG
construction

query planning,
distribution,
specialized HW

Apache
Kafka

CS 245 33

Examples
System Logical

Data Model Physical Storage API Other Features

Relational
databases

Relations
(i.e. tables)

B-trees, column
stores, indexes,
…

SQL, ODBC Durability,
transactions,
query planning,
migrations, …

TensorFlow Tensors NCHW, NHWC,
sparse arrays, …

Python DAG
construction

query planning,
distribution,
specialized HW

Apache
Kafka

Streams of
opaque
records

Partitions,
compaction

Publish,
subscribe

Durability,
rescaling

CS 245 34

Examples
System Logical

Data Model Physical Storage API Other Features

Relational
databases

Relations
(i.e. tables)

B-trees, column
stores, indexes,
…

SQL, ODBC Durability,
transactions,
query planning,
migrations, …

TensorFlow Tensors NCHW, NHWC,
sparse arrays, …

Python DAG
construction

query planning,
distribution,
specialized HW

Apache
Kafka

Streams of
opaque
records

Partitions,
compaction

Publish,
subscribe

Durability,
rescaling

Apache
Spark RDDs

CS 245 35

Examples
System Logical

Data Model Physical Storage API Other Features

Relational
databases

Relations
(i.e. tables)

B-trees, column
stores, indexes,
…

SQL, ODBC Durability,
transactions,
query planning,
migrations, …

TensorFlow Tensors NCHW, NHWC,
sparse arrays, …

Python DAG
construction

query planning,
distribution,
specialized HW

Apache
Kafka

Streams of
opaque
records

Partitions,
compaction

Publish,
subscribe

Durability,
rescaling

Apache
Spark RDDs

Collections of
Java objects

Read external
systems, cache

Functional
API, SQL

Distribution,
query planning,
transactions*

CS 245 36

Some Typical Concerns

Access interface from many, changing apps

Performance: throughput, latency, etc

Reliability in the face of hardware crashes,
bugs, bad user input, etc

Concurrency: access by multiple users

Security and data privacy

CS 245 37

Example

Message queue system

CS 245 38

Producers Consumers

What should happen if two consumers read() at
the same time?

Example

Message queue system

CS 245 39

Producers Consumers

What should happen if a consumer reads a
message but then immediately crashes?

Example

Message queue system

CS 245 40

Producers Consumers

Can a producer put in 2 messages atomically?

Two Big Ideas

Declarative interfaces
» Apps specify what they want, not how to do it
» Example: “store a table with 2 integer columns”,

but not how to encode it on disk
» Example: “count records where column1 = 5”

Transactions
» Encapsulate multiple app actions into one
atomic request (fails or succeeds as a whole)

» Concurrency models for multiple users
» Clear interactions with failure recovery

CS 245 41

Declarative Interface
Examples
SQL
» Abstract “table” data model, many physical

implementations
» Specify queries in a restricted language that the

database can optimize

TensorFlow
» Operator graph gets mapped & optimized to

different hardware devices

Functional programming (e.g. MapReduce)
» Says what to run but not how to do scheduling

CS 245 42

Transaction Examples

SQL databases
» Commands to start, abort or end transactions

based on multiple SQL statements

Apache Spark, MapReduce
» Make the multi-part output of a job appear

atomically when all partitions are done

Stream processing systems
» Count each input record exactly once despite

crashes, network failures, etc
CS 245 43

Outline

Why study data-intensive systems?

Course logistics

Key issues and themes

A bit of history

44CS 245

Early Data Management

At first, each application did its own data
management directly against storage

CS 245 45

Ye Olde
Bank

I’d like a
computerized

account system

I have just
the thing

write_block()

read_block()
Stores
5 MB!

Problems with App Storage
Management

How should we lay out and navigate data?

How do we keep the application reliable?

What if we want to share data across apps?

Every app is solving the same problems!

CS 245 46

Navigational Databases (1964)

CODASYL, IDS

Data is graph of records

Procedural API based
on navigating links:
get department with name='Sales’
get first employee in set department-employees
until end-of-set do {
get next employee in set department-employees
process employee

}

CS 245 47
“Data independence”: app code is not tied to storage details

CS 245 48

Charles W. Bachman, “The Programmer as Navigator”

Edgar F. (Ted) Codd

Proposed the relational DB
model, with declarative
queries & storage (1970)

Relation = table with unique
key identifying each row

CS 245 49

Data independence++:
apps don’t even specify
how to execute queries

Key Ideas in Relational DBMS

CS 245 50

Logical data model:
tables with references

across them (foreign keys)

Data
mgmt.
system Physical storage:

raw files, B-trees,
hash indexes, etc

Administrator

Clients / users

Relational
algebra

(e.g. SQL)

Query planning,
access methods,
transactions, etc

Early Relational DBMS

IBM System R (1974): research system
» Led to IBM SQL/DS in 1981

Ingres (1974): Mike Stonebraker at Berkeley
» Led to PostgreSQL

Oracle database (released 1979)

CS 245 51

Next class, we’ll cover database
architecture by looking at System R

Rest of the Course

We’ll explore both “big ideas” we saw, focusing on
relational DBs but showing examples in other areas

• Declarative interfaces
• Data independence and data storage formats
• Query languages and optimization

• Transactions, concurrency & recovery
• Concurrency models
• Failure recovery
• Distributed storage and consistency

CS 245 52
Don’t forget to sign up for Piazza!

