
TASO: Optimizing Deep Learning Computation with
Automatic Generation of Graph Substitutions

Zhihao Jia
Stanford University

zhihao@cs.stanford.edu

Oded Padon
Stanford University

padon@cs.stanford.edu

James Thomas
Stanford University

jjthomas@stanford.edu

Todd Warszawski
Stanford University

twarszaw@stanford.edu

Matei Zaharia
Stanford University

matei@cs.stanford.edu

Alex Aiken
Stanford University

aiken@cs.stanford.edu

Abstract

Existing deep neural network (DNN) frameworks optimize

the computation graph of a DNN by applying graph transfor-

mationsmanually designed by human experts. This approach

misses possible graph optimizations and is difficult to scale,

as new DNN operators are introduced on a regular basis.

We propose TASO, the first DNN computation graph op-

timizer that automatically generates graph substitutions.

TASO takes as input a list of operator specifications and

generates candidate substitutions using the given operators

as basic building blocks. All generated substitutions are for-

mally verified against the operator specifications using an

automated theorem prover. To optimize a given DNN com-

putation graph, TASO performs a cost-based backtracking

search, applying the substitutions to find an optimized graph,

which can be directly used by existing DNN frameworks.

Our evaluation on five real-world DNN architectures shows

that TASO outperforms existing DNN frameworks by up to

2.8×, while requiring significantly less human effort. For ex-

ample, TensorFlow currently contains approximately 53,000

lines of manual optimization rules, while the operator speci-

fications needed by TASO are only 1,400 lines of code.

CCS Concepts • Computing methodologies→Neural

networks; • Computer systems organization→ Neural

networks; • Software and its engineering→ Formal soft-

ware verification.

Keywords deep neural network, computation graph sub-

stitutions, superoptimization, formal verification

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6873-5/19/10. . . $15.00

https://doi.org/10.1145/3341301.3359630

ACM Reference Format:

Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei

Zaharia, and Alex Aiken. 2019. TASO: Optimizing Deep Learning

Computation with Automatic Generation of Graph Substitutions.

In ACM SIGOPS 27th Symposium on Operating Systems Principles

(SOSP ’19), October 27–30, 2019, Huntsville, ON, Canada. ACM, New

York, NY, USA, 16 pages. https://doi.org/10.1145/3341301.3359630

1 Introduction

Deep neural network (DNN) frameworks represent a neural

architecture as a computation graph, where each node is a

mathematical tensor operator (e.g., matrix multiplication,

convolution, etc.). To improve the runtime performance of a

computation graph, the most common form of optimization

is graph substitutions that replace a subgraph matching a

specific pattern with a functionally equivalent subgraph with

improved performance.

Existing DNN frameworks optimize a computation graph

by applying graph substitutions that are manually designed

by domain experts, as depicted in Figure 1a. For example,

TensorFlow, PyTorch, TensorRT, and TVM use a greedy

rule-based optimization strategy and directly perform all

applicable substitutions (i.e., rules) on an input computation

graph [6, 8, 31, 36]. MetaFlow [21] allows substitutions that

may either increase or decrease performance to enable a

larger search space of equivalent computation graphs and

uses back-tracking search to explore this space, but it still

requires manually specified substitutions. Although manu-

ally designed substitutions improve the performance of DNN

computations, they fall short in several respects.

Maintainability. Hand-written graph substitutions require

significant engineering effort. For example, TensorFlow r1.14

includes 155 substitutions implemented in approximately

53K lines of C++ code. The maintenance problem is ag-

gravated by the fact that new operators are continuously

introduced; for example, recent work has proposed depth-

wise [19], grouped [38], and transposed convolutions [16]

for different image classification tasks. TensorFlow r1.14 cur-

rently includes 17 graph substitutions (written in 4K lines of

code) to optimize ordinary convolution (e.g., fusing it with

different types of operators). With the existing approach,

47

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada Z. Jia et al.

(a) Existing DNN frameworks.

(b) TASO.

Figure 1. Comparing computation graph optimization in

existing DNN frameworks with TASO.

supporting each new convolution variant would require a

similar implementation effort, as each has slightly different

semantics and cannot be directly optimized using existing

substitutions.

Data layout. Tensor data can be stored in memory in vari-

ous layouts, and this choice has a high impact on runtime

performance. The best layout depends on both the operator

and the hardware. For example, on a P100 GPU, convolution

performs best with row-major layout (i.e., the inner-most di-

mension is contiguously stored), while matrix multiplication

performs best with column-major layout (i.e., the outer-most

dimension is contiguously stored). On a Tesla V100 GPU

with tensor cores [5] supporting 4×4 matrix operations, opti-

mal performance may require tiling tensors into 4×4 chunks.

However, considering layout transformations together with

graph substitutions adds another level of complexity. For ex-

ample, a graph substitution may only improve performance

if it is combined with a particular layout transformation (see

Section 7.5). Current frameworks avoid this complexity by

treating data layout and graph substitution as separate op-

timization problems and solve them sequentially [8, 27], as

shown in Figure 1a, but this separation misses many possible

optimization opportunities.

Correctness. Hand-written graph substitutions are error-

prone, and a bug in graph substitutions can lead to incorrect

computation graphs [2, 4]. The same issue arises in com-

piler optimization, where an incorrect optimization leads

to incorrect programs. In the compiler literature, signifi-

cant effort has been devoted to formally verifying optimiza-

tions [7, 11, 13, 23, 29, 30, 33, 35]. However, to the best of our

knowledge, such techniques have not been applied to graph

substitution optimizations performed by DNN frameworks.

1.1 Our Approach

In this paper, we present TASO (Tensor Algebra SuperOp-

timizer), the first DNN computation graph optimizer that

automatically generates graph substitutions. Figure 1b shows

an overview of TASO, which differs from existing frame-

works in three aspects. First, TASO only requires operator

definitions and specifications, and automatically generates

graph substitutions, reducing manual effort. Second, TASO

employs formal verification to ensure correctness of the gen-

erated graph substitutions. Finally, TASO jointly optimizes

graph substitution and data layout, achieving significantly

better runtime performance.

Generating substitutions. TASO’s graph substitution gen-

erator enumerates all possible computation graphs over a

given set of DNN operators (e.g., the cuDNN kernels [10]) up

to a fixed size, and executes them on a set of random input

tensors. Any pair of computation graphs that have identical

results on the random inputs are considered as a candidate

substitution. To efficiently find all such pairs, TASO con-

structs a hash table where computation graphs are stored

based on the hash of their outputs for the random inputs.

Formal verification. TASO’s graph substitution verifier is

used to ensure correctness of the generated graph substitu-

tions, relying on user provided operator properties. Operator

properties capture mathematical properties of operators, e.g.,

linearity of convolution. The full list of 43 operator proper-

ties we used appears in Table 2. As our evaluation shows, a

small set of properties for each operator suffices to prove the

correctness of complex substitutions.

Formally, we model tensor operators using a symbolic

representation based on first-order logic that is agnostic to

the size of the underlying tensors, and can succinctly express

operator properties. The verifier uses the specified properties

to check the correctness of all generated graph substitutions

using an automated theorem prover.

48

TASO SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

We also present a methodology for developing operator

properties, which assists the developer in two ways: (1) dis-

covery of required properties is guided by the graph substi-

tution generator, and (2) operator properties are subject to

further validation using symbolic execution on tensors of

small sizes. During the development process, we found that

the our verification methodology uncovered several bugs,

both in the operator specifications and in the implementation

of the graph substitution generator.

Joint optimization. TASO jointly optimizes graph substi-

tutions and data layout transformations by integrating them

into a common representation. TASO uses the cost-based

backtracking search algorithm of MetaFlow [21] and extends

its cost model to also capture performance differences that

arise from different data layouts. During the search, TASO

measures the performance of a proposed DNN operator with

a specific proposed data layout on the hardware. These indi-

vidual measurements are used to predict the performance of

an entire computation graph with specific data layouts.

Evaluation. We evaluate TASO on five real-world DNN ar-

chitectures. For widely used DNNs optimized by existing

frameworks, such as ResNet-50 [18], TASO matches the per-

formance of these frameworks with hand-written rules by

using operator definitions and specifications 1,400 lines long.

For new DNN architectures such as ResNeXt-50 [38], Nas-

RNN [39], NasNet-A [40], and BERT [15], TASO is up to

2.8× faster than state-of-the-art frameworks, by automati-

cally discovering novel graph substitutions to optimize these

architectures. Compared to sequentially optimizing graph

substitutions and data layout, we show that the joint opti-

mization can further improve performance by 1.2×. In all

experiments, TASO discovered an optimized graph in less

than ten minutes, making it feasible to use when optimizing

a DNN architecture before large-scale deployment.

2 Graph Substitution Generator

This section describes the TASO substitution generator that

automatically generates potential substitutions given a list

of primitive operators. The generation algorithm finds all

valid substitutions up to a certain size.

To find all potential substitutions, a straightforward ap-

proach is to test all pairs of graphs for equivalence, which

requires a quadratic number of tests between graphs. We

adopt an idea from compiler superoptimization [7] and com-

pute a fingerprint for each graph, which is a hash of the graph

outputs on some specific inputs. Two graphs are certainly

not equivalent if they have different fingerprints, and so by

only comparing graphs with the same fingerprint, TASO

significantly reduces the number of equivalence tests. In

the experiments, we observe that all graphs with the same

fingerprint are verified equivalent by TASO.

(a) Associativity of matrix multiplication.

(b) Fusing two matrix multiplications using concatenation and split.

Figure 2. Graph substitution examples.

2.1 Graph Substitution Definition

A graph substitution consists of three components: (1) a source

graph that is matched to subgraphs in a computation graph;

(2) a target graph1 that defines a functionally equivalent new

subgraph to replace thematched subgraph; and (3) amapping

relation between input/output tensors in the source and tar-

get graphs. Figure 2a shows an example graph substitution

using the associativity of matrix multiplication. Figure 2b

fuses two matrix multiplications into one using concatena-

tion and split along the row dimension. A, B, C , X , and Y
identify the mapping between input and output tensors in

the source and target graphs.

A graph substitution is specified independently of the con-

crete tensor shapes. For example, the substitutions of Figure 2

can be applied to tensors A,B, and C of any concrete shape.
Some operators also depend on configuration parameters to

determine the behavior of the operator. For example, the

parameters of convolution determine the strides, padding,

and activation (e.g., applying the relu function [28] as part
of convolution); and the parameters of split or concatenation

determine the axis along which to apply the operator.

Concatenation and split operators. Concatenation and

split operators are commonly used in fusing operators with

shared inputs, as illustrated in Figure 2b. A split operator

partitions a tensor into two disjoint sub-tensors along a

1In some of the superoptimization literature, what we call the source is

called the target, and what we call the target is called the rewrite.

49

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada Z. Jia et al.

Figure 3. A graph substitution for fusing matrix multiplications with a shared input. The target graph has a concat and a
split operator, both of which are performed along the row dimension of a matrix. The split tree of the row dimension for
each tensor is shown in a gray box.

dimension determined by its parameter. This presents a com-

plication, as the split point cannot be inferred from the input

tensors or the parameter. To solve this problem, we observe

that a split operator always partitions a tensor at previous

concatenation points to “undo” the most recent concatena-

tion operator. We use this fact to define a suitable semantics

for the split operator.

Formally, we maintain a split tree for each dimension of a

tensor to track the concatenation history. Figure 3 shows the

split trees of the row dimension for all tensors in Figure 2b.

The split trees allow the substitution to recover the split

point without introducing any additional parameters. Our

approach also supports multi-way concatenation and split

by nesting of concatenation and split operators.

2.2 Generation Algorithm

For a given set of operator specifications, TASO generates

potential graph substitutions in two steps, as shown in Al-

gorithm 1.

Step 1: Enumerating potential graphs and collect-

ing their fingerprints. TASO first enumerates all potential

graphs up to a certain size by using a given set of operators.

To construct a graph, TASO iteratively adds an operator in

the current graph by enumerating the type of the operator

and the input tensors to the operator. The input tensors can

be initial input tensors to the graph (e.g., A, B, and C in Fig-
ure 2) or the output tensors of previous operators (e.g., the

output of the matmul and concat operators in Figure 2).
Algorithm 1 (line 7-18) shows a depth-first search algo-

rithm for constructing all acyclic computation graphs that do

not contain duplicated computation.We say a graph contains

duplicated computation if it has two operators performing

the same computation on the same input tensors. The gen-

erator ignores such graphs as they do not represent useful

computation graphs.

For each graph, we collect its fingerprint, which is a hash

of the output tensors obtained by evaluating the graph on

Algorithm 1 Graph substitution generation algorithm.

1: Input: A set of operators P, and a set of input tensors I.

2: Output: Candidate graph substitutions S.

3:

4: // Step 1: enumerating potential graphs.

5: D = {} //D is a graph hash table indexed by their fingerprints.

6: Build(1, ∅, I)

7: function Build(n, G, I)
8: if G contains duplicated computation then

9: return

10: D = D + (FingerPrint(G),G)

11: if n < threshold then
12: for op ∈ P do

13: for i ∈ I and i is a valid input to op do
14: Add operator op into graph G.

15: Add the output tensors of op into I.

16: Build(n + 1, G, I)
17: Remove operator op from G.

18: Remove the output tensors of op from I.

19:

20: // Step 2: testing graphs with identical fingerprint.

21: S = {}

22: for G1,G2 ∈ D with the same FingerPrint(·) do

23: if G1 and G2 are equivalent for all test cases then

24: S = S + (G1,G2)

25: return S

some input tensors. TASO uses both randomly initialized

tensors and a number of constants as inputs to allow finding

substitutions involving constant tensors, such as the identity

matrix (see examples in Section 7.3). To avoid floating-point

errors in computing a fingerprint, all tensors are represented

with integers, following the method introduced in [37].

Since a graph can have an arbitrary number of output

tensors, the hash function must ensure the fingerprint is

independent of any permutation of the output tensors. To

guarantee this property, TASO employs a two-step hash

50

TASO SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

function to compute fingerprints as follows.

FingerPrint(G) = hash2 ({hash1(ti) | i ∈ Outputs(G)})

where ti are the output tensors of graph G. hash1 computes
the states and content of an output tensor, including the size,

shape, and content of the tensor. hash2 is a symmetric hash

function applied to an unordered set of hash values.

Step 2: Testing graphs with identical fingerprint. For

graphs with the same fingerprint, TASO further examines

their equivalence on a set of test cases. Similar to collecting

fingerprints, each test case contains a set of randomized

input tensors, and two graphs pass if they produce equivalent

output tensors for all test cases. Unlike the fingerprints, these

tests use floating point numbers ranging between −1 and 1,

and classify two output tensors as equivalent if their outputs

differ by no more than a small threshold value, which is

10−5 in the evaluation. For this threshold, we observed no

discrepancy from the integer tests. However, it is possible

to use a smaller threshold to filter out substitutions that are

valid for real numbers but result in floating point errors.

Each pair of graphs passing the random testing becomes

the source and target graphs of a candidate graph substi-

tution, and the mapping relation between the input/output

tensors in the source and target graphs can be automatically

inferred from the test cases. All candidate graph substitutions

are then sent to the substitution verifier to check their cor-

rectness (Section 3), and later pruned to eliminate redundant

substitutions (Section 4).

The algorithm described so far is generic, in the sense

that it does not depend on the specific tensor operators used.

However, we observed that for DNN applications, there are

two operators that require special handling. The relu op-
erator [28], which is commonly used in DNN applications,

returns 0 for all negative inputs. As relu often returns 0,
it results in many superfluous substitutions being valid. To

prevent these substitutions from being generated, the gen-

erator replaces relu by an arbitrary non-linear function
(our implementation uses x �→ x(x + 1) + 1). The enlarge
operator increases the size of a tensor by padding it with

zeros, which is useful for fusing convolutions with differ-

ent kernel sizes [21]. However, the presence of zeros also

results in many superfluous substitutions. To overcome this,

the generator only considers computation graphs in which

enlarge is applied to an input tensor, i.e., not to the output
of another operator. This restriction captures the intended

use of enlarge for fusing convolutions, while avoiding the
superfluous substitutions.

It is worth noting that prior work [7] reported false posi-

tives in using random testing to examine code transforma-

tions in compiler superoptimization. They observed that a

number of incorrect code transformations passed a set of

test cases. We have not observed any false positive cases in

all the experiments. We use a single test case to examine all

graph pairs with the same fingerprint, and all substitutions

Table 1. Tensor operators and constant tensors included

in TASO. Similar to existing DNN frameworks [6, 31], pool-

ing and convolution operators support different strides and

padding modes (i.e., Psame and Pvalid); convolution supports
different activation functions (i.e., Anone and Arelu). Section 6
provides more details on the usage of the constants.

Name Description Parameters

Tensor Operators

ewadd Element-wise addition

ewmul Element-wise multiplication

smul Scalar multiplication

transpose Transpose

matmul Batch matrix multiplication#

conv Grouped convolution% stride, padding, activation

enlarge Pad conv. kernel with zeros† kernel size

relu Relu operator

poolavg Average pooling kernel size, stride, padding

poolmax Max pooling kernel size, stride, padding

concat Concatenation of two tensors concatenation axis

split{0,1} Split into two tensors split axis

Constant Tensors

Cpool Average pooling constant kernel size

Iconv Convolution id. kernel kernel size

Imatmul Matrix multiplication id.

Iewmul Tensor with 1 entries

Normal matrix multiplication is considered as batch size equals 1.
% Normal and depth-wise conv. are special cases of grouped conv.
† Increase the size of a conv. kernel, restricted to operate on input tensors.

passing the test case are correct and verified by the substitu-

tion verifier. This is likely due to the high arithmetic density

of DNN operators and the lack of branching (if statements)

in computation graphs. As a reference, [17] shows that for

programs with only linear operators, the probability that

two nonequivalent programs produce identical output on a

random input is at most 1
d
, where d is the number of possible

values for a variable (i.e., d = 232 in TASO).

3 Graph Substitution Verifier

The key idea behind our approach to formally verifying sub-

stitutions is to use a small set of operator properties expressed

in first-order logic. These properties are manually written

and reviewed, and are further validated by symbolically ex-

ecuting operators on tensors of small sizes and confirming

that the operator properties are satisfied for these tensor

sizes. Development of operator properties is guided by the

substitutions discovered by the substitution generator.

For purposes of verification, we model tensor operators us-

ing first-order logic, where operators are represented using

functions of both their parameters and their input tensors.

For example conv(s,p, c,x ,y) represents the convolution op-
erator applied to tensors x and y, where the parameter s
determines the stride, p determines padding mode, and c
determines the activation mode, e.g., applying a relu acti-
vation function as part of the convolution operator kernel.

For example, the fact that convolution without activation

51

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada Z. Jia et al.

Table 2. Operator properties used for verification. The operators are defined in Table 1, and the properties are grouped by the

operators they involve. Logical variablesw,x ,y, and z are of type tensor, and variables a, c,k,p, and s are of type parameter.
The variable a is used for the axis of concatenation and split, c for the activation mode of convolution, k for the kernel shape
of pooling, p for the padding mode of convolution and pooling, and s for the strides of convolution and pooling.

Operator Property Comment

∀x ,y, z. ewadd(x , ewadd(y, z)) = ewadd(ewadd(x ,y), z) ewadd is associative
∀x ,y. ewadd(x ,y) = ewadd(y,x) ewadd is commutative
∀x ,y, z. ewmul(x , ewmul(y, z)) = ewmul(ewmul(x ,y), z) ewmul is associative
∀x ,y. ewmul(x ,y) = ewmul(y,x) ewmul is commutative
∀x ,y, z. ewmul(ewadd(x ,y), z) = ewadd(ewmul(x , z), ewmul(y, z)) distributivity

∀x ,y,w . smul(smul(x ,y),w) = smul(x , smul(y,w)) smul is associative
∀x ,y,w . smul(ewadd(x ,y),w) = ewadd(smul(x ,w), smul(y,w)) distributivity

∀x ,y,w . smul(ewmul(x ,y),w) = ewmul(x , smul(y,w)) operator commutativity

∀x . transpose(transpose(x)) = x transpose is its own inverse
∀x ,y. transpose(ewadd(x ,y)) = ewadd(transpose(x), transpose(y)) operator commutativity

∀x ,y. transpose(ewmul(x ,y)) = ewmul(transpose(x), transpose(y)) operator commutativity

∀x ,w . smul(transpose(x),w) = transpose(smul(x ,w)) operator commutativity

∀x ,y, z. matmul(x , matmul(y, z)) = matmul(matmul(x ,y), z) matmul is associative
∀x ,y,w . smul(matmul(x ,y),w) = matmul(x , smul(y,w)) matmul is linear
∀x ,y, z. matmul(x , ewadd(y, z)) = ewadd(matmul(x ,y), matmul(x , z)) matmul is linear
∀x ,y. transpose(matmul(x ,y)) = matmul(transpose(y), transpose(x)) matmul and transpose

∀s,p, c,x ,y,w . conv(s,p, c, smul(x ,w),y) = conv(s,p, c,x , smul(y,w)) conv is bilinear
∀s,p,x ,y,w . smul(conv(s,p, Anone,x ,y),w) = conv(s,p, Anone, smul(x ,w),y) conv is bilinear
∀s,p,x ,y, z. conv(s,p, Anone,x , ewadd(y, z)) = ewadd(conv(s,p, Anone,x ,y), conv(s,p, Anone,x , z)) conv is bilinear
∀s,p,x ,y, z. conv(s,p, Anone, ewadd(x ,y), z) = ewadd(conv(s,p, Anone,x , z), conv(s,p, Anone,y, z)) conv is bilinear
∀s, c,k,x ,y. conv(s, Psame, c,x ,y) = conv(s, Psame, c,x , enlarge(k,y)), enlarge convolution kernel

∀s,p,x ,y. conv(s,p, Arelu,x ,y) = relu(conv(s,p, Anone,x ,y)) conv with Arelu applies relu
∀x . relu(transpose(x)) = transpose(relu(x)) operator commutativity

∀s,p,x ,k . conv(s,p, Anone,x , Cpool(k)) = poolavg(k, s,p,x) pooling by conv. with Cpool
∀k,x . conv(1, Psame, Anone,x , Iconv(k)) = x identity kernel

∀x . matmul(x , Imatmul) = x identity matrix

∀x . ewmul(x , Iewmul) = x ewmul identity

∀a,x ,y. split0(a, concat(a,x ,y)) = x split definition

∀a,x ,y. split1(a, concat(a,x ,y)) = y split definition

∀x ,y, z,w . concat(0, concat(1,x ,y), concat(1, z,w)) = concat(1, concat(0,x , z), concat(0,y,w)) geometry of concatenation

∀a,x ,y,w . concat(a, smul(x ,w), smul(y,w)) = smul(concat(a,x ,y),w) operator commutativity

∀a,x ,y, z,w . concat(a, ewadd(x ,y), ewadd(z,w)) = ewadd(concat(a,x , z), concat(a,y,w)) operator commutativity

∀a,x ,y, z,w . concat(a, ewmul(x ,y), ewmul(z,w)) = ewmul(concat(a,x , z), concat(a,y,w)) operator commutativity

∀a,x ,y. concat(a, relu(x), relu(y)) = relu(concat(a,x ,y)) operator commutativity

∀x ,y. concat(1, transpose(x), transpose(y)) = transpose(concat(0,x ,y)) concatenation and transpose

∀x ,y, z. concat(1, matmul(x ,y), matmul(x , z)) = matmul(x , concat(1,y, z)) concatenation and matrix mul.

∀x ,y, z,w . matmul(concat(1,x , z), concat(0,y,w)) = ewadd(matmul(x ,y), matmul(z,w)) concatenation and matrix mul.

∀s,p, c,x ,y, z. concat(0, conv(s,p, c,x , z), conv(s,p, c,y, z)) = conv(s,p, c, concat(0,x ,y), z) concatenation and conv.

∀s,p, c,x ,y, z. concat(1, conv(s,p, c,x ,y), conv(s,p, c,x , z)) = conv(s,p, c,x , concat(0,y, z)) concatenation and conv.
∀s,p,x ,y, z,w . conv(s,p, Anone,concat(1,x , z), concat(1,y,w)) =

ewadd(conv(s,p, Anone,x ,y), conv(s,p, Anone, z,w))
concatenation and conv.

∀k, s,p,x ,y. concat(1, poolavg(k, s,p,x), poolavg(k, s,p,y)) = poolavg(k, s,p, concat(1,x ,y)) concatenation and pooling

∀k, s,p,x ,y. concat(0, poolmax(k, s,p,x), poolmax(k, s,p,y)) = poolmax(k, s,p, concat(0,x ,y)) concatenation and pooling

∀k, s,p,x ,y. concat(1, poolmax(k, s,p,x), poolmax(k, s,p,y)) = poolmax(k, s,p, concat(1,x ,y)) concatenation and pooling

(denoted by Anone) is linear in its first argument is captured
by the following operator property (where ewadd represents
element-wise tensor addition):

∀s,p,x ,y, z. conv(s,p, Anone, ewadd(x ,y), z) =
ewadd(conv(s,p, Anone,x , z), conv(s,p, Anone,y, z))

Table 1 lists all operators and tensor constants used in our

evaluation, and Table 2 shows the full list of operator prop-

erties used in our evaluation to verify graph substitutions.

Given the operator properties, we use a first-order theo-

rem prover—our implementation uses Z3 [14]—to verify all

52

TASO SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

generated substitutions. This verification amounts to entail-

ment checking in first-order logic, checking that the operator

properties entail functional equivalence of the source and

target graphs of each generated substitution.

Modeling the operators using first-order logic involves

a degree of abstraction (e.g., the shapes of tensors are not

modeled). We found this level of abstraction to be suitable

for verifying graph substitutions. We also note that the data

layout is abstracted for verification purposes—layout does

not affect operator semantics, and the optimizer (Section 5)

ensures that layouts are used consistently.

Methodology for developing operator properties. We de-

veloped operator properties as needed to determine the cor-

rectness of generated graph substitutions using an iterative

process. During the development process, we ran the sub-

stitution generator and tried to verify all discovered substi-

tutions. If a substitution could not be verified and appeared

correct, we added an appropriate property (or properties). To

safeguard against mistakes in operator properties, we used

further validation steps.

To validate operator properties, TASO verifies the opera-

tor properties themselves for all combinations of parameter

values and tensor sizes up to a small bound—in our evalu-

ation the bound was 4×4×4×4. For this, TASO requires a

basic symbolic implementation of each tensor operator in

Python. TASO symbolically executes this implementation

for tensors of small size, effectively elaborating the tensor

operations into symbolic real arithmetic expressions, where

activation functions (e.g., relu) are modeled using uninter-
preted functions. TASO then uses Z3, here as an SMT solver

for the theory of real arithmetic, to verify the operator prop-

erties. For example, if a user would try to add the (wrong)

property stating the convolution operator is linear for all

activation modes (including relu activation), then this check
would show that this property is not satisfied by the actual

operators.

As an additional validation step that assists the develop-

ment process, TASO checks that the set of operator prop-

erties is consistent and does not contain redundancies (i.e.,

a property entailed by other properties), which amounts to

first-order entailment checks. These checks are also useful

for discovering erroneous properties, and are cheaper to

perform than the verification for small tensor sizes.

During our development process, the verification method-

ology revealed several subtle bugs. Some bugs in the graph

substitution generator were found when it generated substi-

tutions that could not be verified, and the validation steps

described above revealed several bugs in candidate operator

properties. In our experience, a new operator can be sup-

ported with a small amount of effort, usually a few hours

of work by an expert. Typically a few properties must be

written for each operator. In our evaluation, we were able to

(a) A redundant substitution that is equivalent to Figure 2a by renaming

input tensor C with A.

(b) A redundant substitution with a common subgraph.

(c) A redundant substitution with a common subgraph.

Figure 4. Example redundant substitutions pruned by TASO.

Matmul and Add refer to matrix multiplication and element-
wise addition, respectively. For each subgraph, A, B, and C

refer to its input tensors, while X refers to the output tensor.

verify all 743 generated graph substitutions using 43 operator

properties (see Table 2).

4 Pruning Redundant Substitutions

A graph substitution is redundant if it is subsumed by a

more general valid substitution. This section describes the

pruning techniques used by TASO to eliminate redundant

graph substitutions. All pruning steps preserve all optimiza-

tion opportunities: if graph G can be transformed into graph

G′ using a sequence of substitutions, then G can always be

transformed into G′ after pruning (possibly using a different

set of transformations).

Input tensor renaming. TASO eliminates graph substitu-

tions identical to other substitutions modulo input tensor

53

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada Z. Jia et al.

Table 3. The number of remaining graph substitutions after

applying the pruning techniques in order.

Pruning Remaining Reduction

Techniques Substitutions v.s. Initial

Initial 28744 1×

Input tensor renaming 17346 1.7×

Common subgraph 743 39×

renaming. For example, Figure 4a shows a redundant substi-

tution equivalent to Figure 2a by renaming input tensor C

with A. For substitutions that are equivalent through input

tensor renaming, TASO prunes all but a single most general

substitution.

Common subgraph. TASO also tries to eliminate substi-

tutions whose source and target graphs have a common

subgraph. TASO identifies two forms of common subgraphs

that can lead to pruning.

The first form of common subgraph is illustrated in Fig-

ure 4b. Here, the source and target graphs both contain a

common operator with the same input tensors (highlighted

in gray boxes). The common subgraph represents an input to

other operators in both the source and target graphs. There-

fore, we can obtain a more general substitution by replacing

the common subgraph with a fresh input tensor. If this more

general substitution is indeed valid, then TASO prunes the

less general substitution.

The second form of common subgraph is demonstrated in

Figure 4c. Here, the common subgraph (highlighted in gray

boxes) includes all the outputs in both the source and target

graphs. In this case, a more general substitution can be ob-

tained by completely removing the common subgraph, mak-

ing its inputs new outputs of the source and target graphs.

TASO prunes the less general substitution if the more general

one is valid.

Table 3 shows the effect of the TASO pruning techniques

on the number of substitutions. We observe that both prun-

ing techniques play an important role in eliminating redun-

dant substitutions and their combination reduces the number

of substitutions TASO must consider by 39×.

5 Joint Optimizer

We now describe the TASO optimizer for jointly optimiz-

ing data layout and graph substitution. The optimizer uses

the MetaFlow [21] cost-based backtracking search algorithm

to search for an optimized computation graph by applying

verified substitutions. TASO extends MetaFlow’s search al-

gorithm to also consider possible layout optimization oppor-

tunities when performing substitutions.

When applying a substitution on a matched subgraph,

based on the data layouts of tensors in the source graph and

the layouts supported by the operators, TASO enumerates

possible layouts for tensors in the target graph. As a result,

Figure 5. A graph substitution using the transpose of ma-

trix multiplication. matmul and transpose indicate matrix
multiplication and transpose, respectively. The parentheses

show the potential layouts for each tensor in the source and

target graphs, where C and R indicate the column-major and
row-major layouts of a tensor.

Algorithm 2 Cost-Based Backtracking Search

1: Input: an input graph Gin, verified substitutions S, a cost

model Cost(·), and a hyper parameter α .
2: Output: an optimized graph.

3:

4: P = {Gin} // P is a priority queue sorted by Cost.

5: while P � {} do

6: G = P.dequeue()
7: for substitution s ∈ S do

8: // Layout(G, s) returns possible layouts applying s on G.

9: for layout l ∈ Layout(G, s) do
10: // Apply(G, s, l) applies s on G with layout l .
11: G′ = Apply(G, s, l)
12: if G′ is valid then

13: if Cost(G′) < Cost(Gopt) then

14: Gopt = G′

15: if Cost(G′) < α × Cost(Gopt) then

16: P.enqueue(G′)

17: return Gopt

applying a substitution on a matched computation graph

may result in multiple graphs with identical graph structure

but different data layouts.

For example, Figure 5 shows the potential computation

graphs that can be derived by applying the transpose of ma-

trix multiplication on a source graph with a default column-

major layout (shown as C). Both thematrixmultiplication and
transpose operators also support an alternative row-major

layout (shown as R). The data layouts for all mapped tensors
in the target graph (i.e., A, B, and X) must match the layouts

in the source graph. The two intermediate tensors in the

target graph can have either a row-major or a column-major

layout, therefore TASO considers four different computation

graphs (i.e., CC, CR, RC, and RR for the two intermediate ten-
sors) when applying this substitution. This allows TASO to

54

TASO SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

Figure 6. A graph substitution example that introduces a cy-

cle into a computation graph, where A,B are the inputs, and
X is the output. The original graph computesA×relu(A×B),
and the new graph is the result of applying the substitution

shown in Figure 2b that fuses the two matrix multiplications

using concatenation and split. The source and target graphs

of the substitution are shown in the dotted boxes. Both the

original graph and the substitution are acyclic. However, the

resulting graph contains a cycle (highlighted in red).

capture potential layout transformation opportunities when

performing graph substitutions.

Algorithm 2 shows our cost-based backtracking search al-

gorithm for jointly optimizing substitution and data layout.

The cost model is motivated by the fact that DNN operators

perform dense linear algebra with no branches, and there-

fore their performance on hardware is highly consistent and

predictable given the same data layouts and configuration

parameters (e.g., the strides and padding of a convolution).

Similar to MetaFlow [21], TASOmeasures the execution time

of a DNN operator once for each configuration and data lay-

out, and estimates the performance of a graph by summing

up the measured execution time of its operators.

To search for an optimized graph, all candidate graphs

are maintained in a priority queue P and are dequeued in

increasing order of cost. For each dequeued graph G, TASO

considers each verified substitution and possible layouts

applicable to the substitution, and applies them to obtain

functionally equivalent new graphs G′.

A non-obvious property of graph substitutions is that ap-

plying them can introduce cycles into a graph. Figure 6 shows

one example where applying a valid substitution results in

a cyclic graph. Since computation graphs must be acyclic,

TASO checks the acyclicity of G′ (line 12 of Algorithm 2)

before enqueuing it in P.

Finally, the best discovered graph Gopt is returned by the

search algorithm. The search space is pruned by a hyper

parameter α , which directly eliminates all graphs whose
cost is α times worse than the best discovered graph. The
parameter α trades off between the search time and the
best discovered graph. Setting α = 1 reduces the search

to a simple greedy algorithm without backtracking, and a

high value for α makes the search explore more possible
candidates and causes more backtracking. We observe that

α = 1.05 achieves good performance in our evaluation.

6 Implementation

TASO is designed and implemented as a generic and extensi-

ble computation graph optimizer for tensor computations,

such that new tensor operators can be easily added. Table 1

lists the tensor operators included in the current implemen-

tation of TASO. Some operators also depend on additional

parameters to determine the behavior of the operator, such as

the strides, padding, and activation of a convolution. In addi-

tion to operators, TASO also includes four types of constant

tensors that are useful in substitutions. In particular, Iewmul,
Imatmul, and Iconv are identity tensors for element-wise mul-
tiplication, matrix multiplication, and convolution, respec-

tively. Cpool allows converting an average pooling operator
to a depth-wise convolution (see examples in Section 7.3).

As explained in Section 3, TASO uses operator proper-

ties specified by the user to verify the generated graph sub-

stitutions. Table 2 lists the 43 properties used to verify all

substitutions in our evaluation.

TASO can easily be extended to include new tensor oper-

ators. For each operator, TASO requires two forms of input:

(1) reference implementations for the operator, and (2) spec-

ifications of operator properties. (1) consists of a concrete

implementation (in C++) used by the substitution generator

and a symbolic implementation (in Python) used to validate

the operator specifications. In our experience, adding a new

operator requires a few hours of work by an expert.

For a new operator whose specifications are currently

missing, TASO treats it as an opaque operator and can still

optimize the rest of the graph using verified substitutions.

TASO is implemented on top of MetaFlow, and reuses

the MetaFlow cost-based backtracking search [21]. Overall,

our implementation of TASO contains around 8,000 lines

of code for the core components (i.e., the substitution gen-

erator, verifier, and optimizer), and 1,400 lines of code for

the operator reference implementations, including the 43

operator properties.

TASO is framework-agnostic and can be plugged in to

existing DNN frameworks such as TensorRT and TVM by

simply emitting the optimized graph in the target frame-

work’s input format. In the evaluation, we demonstrate this

portability on TensorRT and TVM, and show that they can

directly use TASO’s optimizations to improve performance.

7 Evaluation

In this section we aim to evaluate the following points:

• Can TASO automatically generate and verify graph

substitutions in acceptable run time?

55

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada Z. Jia et al.

• Can TASO improve the end-to-end performance of

real-world DNN architectures, especially for emerging

architectures with recently introduced operators?

• Can TASO’s joint optimization of computation graphs

and data layouts achieve better performance than sep-

arate optimizations?

7.1 Experimental Setup

DNNs.We use five real-world DNN architectures to evaluate

TASO. ResNet-50 [18] is a widely used convolutional neu-

ral network for image classification and achieved the best

classification performance in the ILSVRC [32] competition.

ResNeXt-50 [38] improves the model accuracy and runtime

efficiency of ResNet-50 by introducing a new grouped con-

volution operator. NasNet-A [40] and NasRNN [39] are two

DNN architectures automatically discovered by machines

through neural architecture search. NasNet-A and NasRNN

exceed the best human-designed DNN architectures for im-

age classification and language modeling tasks, respectively.

Finally, BERT [15] is a new language representation archi-

tecture that obtained the state-of-the-art model accuracy on

a spectrum of language tasks.

All experiments were performed on an Amazon p3.2xlarge

instance [1] with an 8-core Intel E5-2600 CPU, 64 GB DRAM,

and one NVIDIA Tesla V100 GPU.

To generate candidate graph substitutions, TASO enumer-

ates all potential graphs with up to four operators by using

all DNN operators listed in Table 1. TASO generated 743

candidate substitutions in around 5 minutes.

In the cost-based backtracking search for optimized DNN

graphs, we set the hyperparameter α to be 1.05, which is
identical to the value used in MetaFlow [21]. In all experi-

ments, the end-to-end search time to discover an optimized

computation graph is less than ten minutes.

7.2 End-to-End Evaluation

Wefirst compare the end-to-end inference performance among

TensorFlow [6], TensorFlowXLA [3], TensorRT [36], TVM [8],

MetaFlow [21], and TASO on a V100 GPU. Figure 7 shows

the results. TensorFlow, TensorFlow XLA, TensorRT, and

MetaFlow use the highly-engineered cuDNN and cuBLAS

libraries [10, 12] to perform DNN operators on GPUs, while

TVM generates customized GPU kernels for the DNN opera-

tors. To eliminate the impact of different operator libraries,

we evaluate the performance of TASO on both backends.

To generate GPU kernels in TVM, we allow the auto

tuner [9] to run 2000 trials and use the best discovered config-

uration for each DNN operator. It takes 2 hours on average to

tune a GPU kernel for each DNN operator. The TASO graph

optimizer needs to query the execution time of hundreds of

DNN operators for its cost model, therefore, for the TVM

backend, we reuse the best discovered computation graph

for the cuDNN backend, assuming the cost of an operator in

cuDNN is a reasonable estimate for its cost in TVM.

Among the five DNN architectures, ResNet-50 has been

commonly used and heavily optimized by existing DNN

frameworks. TASO achieves on-par performance for ResNet-

50 with existing frameworks, showing that TASO is able

to automatically discover graph substitutions manually de-

signed by domain experts. For the remaining four DNN ar-

chitectures with new operators and graph structures, TASO

outperforms existing DNN frameworks with speedups rang-

ing from 1.3× to 2.8× on the cuDNN backend and 1.1× to

1.8× on the TVM backend. The speedup is achieved by (1)

automatically discovering optimizing substitutions for the

new operators and (2) jointly optimizing graph substitution

and data layout. We analyze the substitutions discovered by

TASO in Sections 7.3 and 7.4, and the joint optimization of

substitution and data layout in Section 7.5.

7.3 Substitution Case Study

To understand how the substitutions generated and verified

by TASO improve runtime performance, we study a few

graph substitution examples in detail.

NasNet-A is the best discovered CNN architecture for the

CIFAR-10 dataset, obtained by neural architecture search.

Figure 8a shows a convolutional cell in NasNet-A. Unlike

human-designed architectures, NasNet-A contains uncon-

ventional graph structures, making it hard to optimize with

manual substitutions designed for more standard DNN archi-

tectures. To illustrate how TASO optimizes this architecture,

we show two example substitutions discovered by TASO;

neither is present in any existing DNN framework.

Figure 8b shows graph substitutions that transform two

average pooling operators followed by element-wise addi-

tion to a single depth-wise convolution, by using a constant

tensor Cpool defined in Table 1. The mathematical formula
for average pooling is:

o(n, c,x ,y) =
1

KX × KY

∑

kx

∑

ky

i(n, c,x + kx ,y + ky)

where, KX and KY are the height and width of the pooling

filter. Similarly, the formula for depth-wise convolution is:

o(n, c,x ,y) =
∑

kx

∑

ky

i(n, c,x + kx ,y + ky) ×w(c,kx ,ky)

which produces mathematically equivalent result as an av-

erage pooling if we have w(c,kx ,ky) = 1/(KX × KY). In

addition, TASO also fuses the two depth-wise convolutions

into one using its linearity.

A second new sequence of substitutions for NasNet-A is

shown in Figure 8c, which fuses two depth-wise convolutions

and two convolutions followed by addition to a depth-wise

convolution followed by a standard convolution. This sub-

stitution increases the operator granularity and reduces the

operator launch overhead by using larger operators.

For inferenceworkloads, theweights in DNN architectures

(e.g.,Wi and Cpool in Figure 8) are fixed and independent of

56

TASO SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

A B C D E F G
ResNet-50

0.0

0.5

1.0

1.5

2.0

2.5

1.0x
1.1x

A B C D E F G
NasNet-A

0

2

4

6

8

10

1.3x
1.3x

A B C D E F G
ResNeXt-50

0

5

10

15

20

25

30

2.8x 1.8x

A B C D E F G
NasRNN

0

2

4

6

8

10

12

1.4x
1.3x

A B C D E F G
BERT

0.0

0.5

1.0

1.5

2.0

1.4x

1.1x

In
fe

re
nc

e
Ti

m
e

(m
s)

(A) TensorFlow
(B) TensorFlow XLA

(C) TensorRT
(D) MetaFlow

(E) TASO w/ cuDNN (F) TVM (G) TASO w/ TVM

Figure 7. End-to-end inference performance comparison among existing DNN frameworks and TASO. The experiments were

performed using a single inference sample, and all numbers were measured by averaging 1,000 runs on a NVIDIA V100 GPU.

We evaluated the TASO’s performance with both the cuDNN and TVM backends. For each DNN architecture, the numbers

above the TASO bars show the speedup over the best existing approach with the same backend.

(a) NasNet-A Architecture. (b) Example substitutions discovered by TASO.

(c) A sequence of substitutions discovered by TASO.

Figure 8. The NasNet-A architecture [40] and substitutions discovered by TASO to optimize NasNet-A. Figure 8a shows the

architecture, where avg, conv, and DWC refer to average pooling, convolution, and depth-wise convolution, respectively. The
weight tensors are eliminated for simplicity. Figures 8b and 8c shows two sequences of substitutions discovered by TASO that

are used to optimize subgraphs marked in the black and red boxes in Figure 8a. In Figures 8b and 8c, each arrow refers to a

substitution, and the subgraphs in the same color are the source and target graphs of the substitution. Cpool(3 × 3) in Figure 8b
is a constant matrix whose entries are 1/9, as defined in Table 1. The enlarge operator in Figure 8c increases a convolution’s
kernel size by padding the weight (i.e.,W1) with extra 0’s. For inference workloads, operators in the gray areas in Figures 8b
and 8c only depend on pre-trained weights (i.e.,Wi), and therefore can be pre-computed.

the inputs. TASO preprocesses operators whose inputs are

all pre-trained weights (e.g., the gray areas in Figure 8) to

further reduce the inference time.

ResNeXt-50 replaces large convolutions in ResNet-50

with multiple branches of much smaller convolutions to im-

prove both model accuracy and runtime efficiency, as shown

57

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada Z. Jia et al.

(a)Multi-branch

convolution.

(b) Grouped

convolution.

(c)Multi-branch grouped

convolution.

1 2 4 8 16 32
Num. Convolutions Per Group

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Ex
ec

ut
io

n
Ti

m
e

(m
s)

TensorFlow
TensorFlow XLA

TensorRT
MetaFlow

TASO

(d) Performance comparison.

Figure 9. Different approaches to perform multi-batch con-

volutions in ResNeXt-50 and their performance comparison.

TensorFlow and TensorFlow XLA launch the 32 convolu-

tions separately (Figure 9a). TensorRT and MetaFlow launch

a single grouped convolution kernel that computes all 32

convolutions in parallel (Figure 9b). The best graph discov-

ered by TASO uses 4 grouped convolutions, each of which

computes 8 convolutions (Figure 9c).

in Figure 9a. However, directly launching these small con-

volutions incurs high kernel launch overhead. The cuDNN

library has recently introduced grouped convolution kernels

that perform multiple convolutions in parallel using a single

CUDA kernel [10]. TensorFlow and TensorFlow XLA (r1.14

as of August 2019) currently do not support grouped convo-

lution, so the fastest available ResNeXt-50 implementation

in TensorFlow launches convolutions in multiple branches

separately with the resulting high kernel launch overhead.

TensorRT and MetaFlow use a single grouped convolution

kernel that computes a group of 32 convolutions in parallel.

While grouped convolution enables additional parallelism

and reduces kernel launch overhead, it also requires a larger

cache to save intermediate states for all convolutions, which

results in decreased runtime performance when too many

convolutions are aggregated in a single kernel. Figure 9d

gives the time to run all 32 convolutions using different

group sizes (i.e., the number of convolutions in a group),

showing that neither launching individual convolutions nor

grouping all 32 convolutions is the best option.

Existing frameworks either launch 32 individual convolu-

tions or a single grouped convolution, both of which result in

suboptimal performance. For ResNeXt-50, TASO uses a mix-

ture of previous approaches and launches multiple grouped

convolutions, as shown in Figure 9c. TASO discovered this

mixture automatically, resulting in a speedup of 2.8× com-

pared to the best existing approach.

7.4 Analysis of Used Substitutions

We now present a detailed analysis of how the graph sub-

stitutions discovered by TASO impact the performance of

the optimized graphs. Figure 10 shows a heat map of the

substitutions used to optimize each of the five DNN architec-

tures. Each DNN uses 4-10 different substitutions to achieve

optimized performance, and different DNNs require different

sets of substitutions. This shows the difficulty of manually

designing a few core substitutions to optimize today’s DNN

architectures with increasingly high diversity. TASO is bet-

ter positioned for optimizing new DNNs by automatically

discovering performance critical substitutions.

Additionally, we evaluate the scalability of TASO by con-

sidering substitutions with different size limitations, and

measuring the runtime performance of the optimized graphs.

Figure 11 shows the results. For all three DNN architectures,

performance improvement is consistently achieved by using

larger substitutions up to size 3. ResNeXt-50 and BERT do

not obtain additional speedups by using substitutions with

4 operators, while NasNet-A achieves 1.2× by considering

larger substitutions. Our current implementation of TASO

does not scale to generate all substitutions with 5 or more op-

erators, since the generator is limited by the memory needed

to hold the fingerprints of all potential graphs, which scales

exponentially with graph size. A distributed fingerprint gen-

erator could potentially handle graphs of size 5 and even

more, which we leave as future work.

7.5 Joint Optimization of Graph Substitutions and

Data Layout

To evaluate the performance of the joint optimization in

TASO, we compare the joint optimization with three baseline

strategies: (1) performing only graph substitution optimiza-

tions; (2) performing only data layout optimizations; and (3)

performing the two optimizations sequentially.

Figure 12 shows the comparison results among the four

strategies on BERT. TASO outperforms the three baseline

strategies by 1.2-1.3×.We observe that the speedup is achieved

by using graph substitutions that transform both graph struc-

ture and data layout. One example is depicted in Figure 5.

The most time consuming operation in BERT is matrix mul-

tiplicationA×B, whereA is 64 by 1024 and B is 1024 by 4096.
In cuBLAS, the transposed version of this matrix multiplica-

tion (i.e., (BT ×AT)T) achieves 1.5× speedup when BT andAT

are in the column-major and row-major layout, respectively.

58

TASO SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s19 s20 s21 s22 s23 s24 s25 s26 s27

ResNet50

NasNet-A

ResNeXt-50

NasRNN

BERT

29 6 29 6 1 5 5

3 41 41 14 32 3 15 19 19 9 10

25 5 25 1 23 3 7 5 7

10 40 20 20 10

24 24 12 36

0

10

20

30

40

Figure 10.Aheatmap of how often the verified substitutions are used to optimize the five DNN architectures. Only substitutions

used in at least one DNN are listed. For each architecture, the number indicates how many times a substitution is used by

TASO to obtain the optimized graph.

0 1 2 3 4
Maxmum Graph Substitution Size

1

1.5

2

2.5

3

R
el

at
iv

e
Sp

ee
du

p

NasNet-A
ResNeXt-50
BERT

Figure 11. Performance comparison by using graph substi-

tutions with different size limitations. The y-axis shows the

relative speedups over the input computation graphs.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Execution Time (ms)

Graph Opt.

Layout Opt.

Sequential

Joint Opt.
(TASO)

2.77

3.15

3.27

3.67

Figure 12. End-to-end inference performance comparison

on BERT using different strategies to optimize graph substi-

tution and data layout.

This graph optimization can only be captured when graph

substitution and data layout are jointly considered.

7.6 Graph Substitution Verifier

We evaluate the performance of the graph substitution veri-

fier for its two key tasks: verifying generated substitutions

against operator specifications, and validating the operator

specifications themselves to aid in the development process

(Section 3). Our implementation uses Z3 [14] to automati-

cally discharge all proof obligations, and our experiments

were performed with Z3 version 4.8.5.

Generating the 743 graph substitutions takes around five

minutes, and verifying them against the 43 specified oper-

ator properties takes less than 10 minutes. When checking

the specification for redundancies we use Z3 to search for a

proof of an invalid formula (stating that a specified property

is entailed by the rest of the specification). This search can

continue indefinitely, and in our evaluation we used a time-

out of 10 seconds per query, resulting in a run time of less

than 10 minutes (for 43 axioms). During the development

process, when we had some redundant specifications they

were discovered in a few seconds.

The validation check that verifies the operator specifi-

cation for all combinations of parameter values and tensor

sizes up to 4×4×4×4 is more computationally expensive, with

roughly one million proof obligations. We parallelized it us-

ing 128 CPU cores, which resulted in a run time of roughly

one hour. During the development process, we also found it

useful to verify the operators for more restricted combina-

tions. For example, verifying the specification for tensors of

size exactly 4×4×4×4 (rather than all tensors up to that size)

takes under 10 minutes using a single CPU core.

8 Related Work

Manually designed graph substitutions are used in ex-

isting DNN frameworks to optimize DNN architectures. For

example, TensorFlow, TensorRT, and TVM use a rule-based

strategy and directly perform all applicable substitutions on

an input graph [6, 8, 36]. MetaFlow [21] allows users to de-

fine performance-decreasing substitutions to obtain a larger

space of potential graphs. The key difference between TASO

and these frameworks is that TASO can automatically gener-

ate candidate substitutions, and also provides semi-automatic

support for verifying their correctness. In the evaluation, we

also show that existing frameworks can directly use TASO’s

optimized graphs to improve performance.

Automated DNN code generation. Recent work has

proposed various approaches to generate hardware-specific

59

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada Z. Jia et al.

code for DNN operators. For example, TVM [8, 9] uses a

learning-based approach and automatically generates low-

level optimized code for a diverse set of hardware backends.

Astra [34] optimizes DNN computation by exploring the opti-

mization space of multi-version complication during training.

Compared to these approaches, TASO aims at optimizing

DNN computation at a higher graph level, and therefore

TASO’s optimizations are orthogonal and can be combined

with code generation techniques. It still remains an open

problem of how to jointly optimize DNN computation at

both graph-level and operator-level.

Automated DNN parallelization. ColocRL [26] uses re-

inforcement learning to automatically discover an efficient

device placement for parallelizing DNN training across mul-

tiple GPUs. FlexFlow [20, 22] introduces a comprehensive

search space of parallelization strategies for DNN training,

and uses a randomized search algorithm to find efficient

strategies in the search space. These frameworks optimize

distributed DNN training assuming a fixed computation

graph. We believe it is possible to combine TASO’s graph

optimizations with training parallelization techniques.

Superoptimization is a compiler optimization technique

that was originally designed to find the optimal code for a

sequence of instructions [25]. TASO’s approach to identify-

ing potential substitutions via enumeration of graphs and

fingerprinting is similar to work in automatically generating

peephole optimizers using superoptimization techniques [7].

TASO’s approach to verification, however, is significantly

different. Verification in superoptimization typically relies

on “bit blasting”, that is, modeling every bit in a computation

explicitly in a logical formula (e.g., as a boolean variable).

This approach is possible only when all aspects of a pro-

gram transformation, including the computation and the

data, can be expressed using a known number of bits. For

TASO, where the input tensor sizes for graph substitutions

are unknown, we must take a different approach. While not

fully automatic like verification via bit blasting, our method-

ology based on writing operator specifications is much more

flexible in being able to model future operators with almost

arbitrary semantics, in addition to smoothly handling the

issue of unknown tensor dimensions and split points.

Data layout optimizations. Existing DNN frameworks

that support data layout optimizations treat data layouts

and graph transformations as separate optimization prob-

lems [8, 24, 27]. TASO formulates the problem of performing

graph substitutions and deciding the data layout of each

DNN operator as a joint optimization problem and consid-

ers layout conversions as a part of graph substitutions. As

a result, TASO can automatically generate graph substitu-

tions that optimize both graph structures and data layouts,

and our evaluation shows that jointly optimizing the two

tasks can significantly improve the end-to-end performance,

compared to optimizing the them separately.

9 Limitations and Future Work

One limitation of TASO is the reliance on user provided

operator properties. While our experience has been that the

required effort is manageable, it would be better to eliminate

it altogether. One possible approach is to automatically verify

substitutions directly against the implementations of the

operators, e.g., cuDNN kernels.

Another limitation of TASO is the scalability of the genera-

tor, which requires saving the fingerprints of all computation

graphs up to a fixed size. This approach currently does not

scale beyond graphs of size 4. One possible approach to scale

to larger graphs is to implement a distributed generator. A

second possibility is to replace the brute-force enumeration

with more efficient algorithms or heuristics.

An additional avenue for future research is combining

graph-level and operator-level optimizations. This joint op-

timization is challenging as both problems involve large and

complex search spaces, and optimizations at one level affect

the search space of the other.

10 Conclusion

TASO is the first DNN computation graph optimizer that

automatically generates graph substitutions. TASO formally

verifies the substitutions, and considers graph substitutions

and layout transformations together as a joint optimization

problem, exploiting more optimization opportunities. TASO

matches the performance of existing frameworks on DNNs

for which these frameworks have been heavily optimized

such as ResNet-50, and outperforms existing frameworks

by up to 2.8× on other DNNs, finding novel optimizations

not present in the hundreds of optimization rules in existing

frameworks. TASO achieves these results with dramatically

less human effort than existing frameworks, and provides a

higher level of correctness guarantees.

Acknowledgments

We thank Nikolaj Bjørner, Mingyu Gao, Vinod Grover, Sina

Lin, Feng Ruan, Xi Wang, the anonymous SOSP reviewers,

and our shepherd, Joey Gonzalez, for their helpful feedback.

This work was supported by NSF grant CCF-1409813, the

Exascale Computing Project (17-SC-20-SC), a collaborative

effort of the U.S. Department of Energy Office of Science and

the National Nuclear Security Administration, and is based

on research sponsored by DARPA under agreement num-

ber FA84750-14-2-0006. This research was supported in part

by affiliate members and other supporters of the Stanford

DAWN project—Ant Financial, Facebook, Google, Infosys,

Intel, Microsoft, NEC, SAP, Teradata, and VMware—as well

as Cisco and the NSF under CAREER grant CNS-1651570.

Any opinions, findings, and conclusions or recommenda-

tions expressed in this material are those of the authors and

do not necessarily reflect the views of the NSF.

60

TASO SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

References
[1] 2017. Amazon EC2 P3 Instances. https://aws.amazon.com/ec2/

instance-types/p3/.

[2] 2017. Tensorflow graph transform creates corrupted graph. https:

//github.com/tensorflow/tensorflow/issues/7523.

[3] 2017. XLA: Optimizing Compiler for TensorFlow. https://www.

tensorflow.org/xla.

[4] 2018. Graph transform: fold constant with invalid graph. https://

github.com/tensorflow/tensorflow/issues/16545.

[5] 2018. Tensor Cores in NVIDIA Volta Architecture. https://www.nvidia.

com/en-us/data-center/tensorcore/.

[6] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,

Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry

Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasude-

van, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016.

TensorFlow: A System for Large-Scale Machine Learning.. In Proceed-

ings of the 12th USENIX Conference on Operating Systems Design and

Implementation (OSDI).

[7] Sorav Bansal and Alex Aiken. 2006. Automatic Generation of Peephole

Superoptimizers. In Proceedings of the 12th International Conference

on Architectural Support for Programming Languages and Operating

Systems (ASPLOS XII).

[8] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Haichen Shen, Eddie Q.

Yan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind

Krishnamurthy. 2018. TVM: End-to-End Optimization Stack for Deep

Learning. CoRR abs/1802.04799 (2018). http://arxiv.org/abs/1802.04799

[9] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, ThierryMoreau,

Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. Learning

to Optimize Tensor Programs. In Advances in Neural Information

Processing Systems 31.

[10] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Co-

hen, John Tran, Bryan Catanzaro, and Evan Shelhamer. 2014. cuDNN:

Efficient Primitives for Deep Learning. CoRR abs/1410.0759 (2014).

http://arxiv.org/abs/1410.0759

[11] Berkeley R. Churchill, Oded Padon, Rahul Sharma, and Alex Aiken.

2019. Semantic Program Alignment for Equivalence Checking. In

Proceedings of the 2019 ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI), Phoenix, AZ, USA, June

22-26, 2019. https://doi.org/10.1145/3314221.3314596

[12] cuBLAS 2016. Dense Linear Algebra on GPUs. https://developer.nvidia.

com/cublas.

[13] Manjeet Dahiya and Sorav Bansal. 2017. Black-Box Equivalence Check-

ing Across Compiler Optimizations. In Programming Languages and

Systems, Bor-Yuh Evan Chang (Ed.). Springer International Publishing,

Cham.

[14] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT

Solver. In Proceedings of the Theory and Practice of Software, 14th Inter-

national Conference on Tools and Algorithms for the Construction and

Analysis of Systems (TACAS’08/ETAPS’08).

[15] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.

2018. BERT: Pre-training of Deep Bidirectional Transformers for

Language Understanding. CoRR abs/1810.04805 (2018).

[16] Vincent Dumoulin and Francesco Visin. 2016. A guide to convolution

arithmetic for deep learning. CoRR (2016).

[17] Sumit Gulwani and George C. Necula. 2003. Discovering Affine Equal-

ities Using Random Interpretation. In Proceedings of the 30th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(POPL ’03). ACM.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep

residual learning for image recognition. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR).

[19] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,

Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.

2017. MobileNets: Efficient Convolutional Neural Networks for Mobile

Vision Applications. CoRR abs/1704.04861 (2017).

[20] Zhihao Jia, Sina Lin, Charles R. Qi, and Alex Aiken. 2018. Exploring

Hidden Dimensions in Accelerating Convolutional Neural Networks.

In Proceedings of the 35th International Conference on Machine Learning

(Proceedings of Machine Learning Research), Vol. 80. PMLR.

[21] Zhihao Jia, James Thomas, Todd Warzawski, Mingyu Gao, Matei Za-

haria, and Alex Aiken. 2019. Optimizing DNN Computation with

Relaxed Graph Substitutions. In Proceedings of the 2nd Conference on

Systems and Machine Learning (SysML’19).

[22] Zhihao Jia, Matei Zaharia, and Alex Aiken. 2019. Beyond Data and

Model Parallelism for Deep Neural Networks. In Proceedings of the 2nd

Conference on Systems and Machine Learning (SysML’19).

[23] Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler val-

idation via equivalence modulo inputs. In ACM SIGPLAN Confer-

ence on Programming Language Design and Implementation, PLDI ’14,

Edinburgh, United Kingdom - June 09 - 11, 2014. 216–226. https:

//doi.org/10.1145/2594291.2594334

[24] Chao Li, Yi Yang, Min Feng, Srimat Chakradhar, and Huiyang Zhou.

2016. Optimizing memory efficiency for deep convolutional neural

networks on GPUs. In SC’16: Proceedings of the International Conference

for High Performance Computing, Networking, Storage and Analysis.

IEEE.

[25] Henry Massalin. 1987. Superoptimizer: a look at the smallest program.

In ACM SIGARCH Computer Architecture News, Vol. 15.

[26] Azalia Mirhoseini, Hieu Pham, Quoc V Le, Benoit Steiner, Rasmus

Larsen, Yuefeng Zhou, Naveen Kumar, Mohammad Norouzi, Samy

Bengio, and Jeff Dean. 2017. Device Placement Optimization with

Reinforcement Learning. (2017).

[27] MKLDNN 2016. Intel Math Kernel Library for Deep Neural Networks.

https://01.org/mkl-dnn.

[28] Vinod Nair and Geoffrey E. Hinton. 2010. Rectified Linear Units Im-

prove Restricted Boltzmann Machines. In Proceedings of the 27th Inter-

national Conference on International Conference on Machine Learning

(ICML’10). Omnipress, USA, 807–814. http://dl.acm.org/citation.cfm?

id=3104322.3104425

[29] George C. Necula. 2000. Translation validation for an optimiz-

ing compiler. In Proceedings of the 2000 ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI), Van-

couver, Britith Columbia, Canada, June 18-21, 2000. 83–94. https:

//doi.org/10.1145/349299.349314

[30] Amir Pnueli, Michael Siegel, and Eli Singerman. 1998. Translation

Validation. In Tools and Algorithms for Construction and Analysis of

Systems, 4th International Conference, TACAS ’98, Held as Part of the

European Joint Conferences on the Theory and Practice of Software,

ETAPS’98, Lisbon, Portugal, March 28 - April 4, 1998, Proceedings. 151–

166. https://doi.org/10.1007/BFb0054170

[31] PyTorch 2017. Tensors and Dynamic neural networks in Python with

strong GPU acceleration. https://pytorch.org.

[32] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev

Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,

Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. 2015. ImageNet

Large Scale Visual Recognition Challenge. International Journal of

Computer Vision (IJCV) 115, 3 (2015), 211–252. https://doi.org/10.1007/

s11263-015-0816-y

[33] Rahul Sharma, Eric Schkufza, Berkeley R. Churchill, and Alex Aiken.

2013. Data-driven equivalence checking. In Proceedings of the 2013

ACM SIGPLAN International Conference on Object Oriented Program-

ming Systems Languages & Applications, OOPSLA 2013, part of SPLASH

2013, Indianapolis, IN, USA, October 26-31, 2013. 391–406. https:

//doi.org/10.1145/2509136.2509509

[34] Muthian Sivathanu, Tapan Chugh, Sanjay S. Singapuram, and Lidong

Zhou. 2019. Astra: Exploiting Predictability to Optimize Deep Learning.

61

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada Z. Jia et al.

In Proceedings of the Twenty-Fourth International Conference on Archi-

tectural Support for Programming Languages and Operating Systems

(ASPLOS ’19). ACM, New York, NY, USA.

[35] Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. 2011.

Equality Saturation: ANewApproach toOptimization. LogicalMethods

in Computer Science 7, 1 (2011). https://doi.org/10.2168/LMCS-7(1:

10)2011

[36] TensorRT 2017. NVIDIA TensorRT: Programmable Inference Acceler-

ator. https://developer.nvidia.com/tensorrt.

[37] Shuang Wu, Guoqi Li, Feng Chen, and Luping Shi. 2018. Training

and Inference with Integers in Deep Neural Networks. In International

Conference on Learning Representations.

[38] Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming

He. 2016. Aggregated Residual Transformations for Deep Neural

Networks. CoRR abs/1611.05431 (2016).

[39] Barret Zoph and Quoc V. Le. 2016. Neural Architecture Search with

Reinforcement Learning. CoRR abs/1611.01578 (2016).

[40] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. 2018.

Learning transferable architectures for scalable image recognition.

In Proceedings of the IEEE conference on computer vision and pattern

recognition.

62

