
 

Assignment 3: Failure Recovery 
Assigned:​ Thursday, February 25th, 2021 
Due:​ Thursday, March 18th, 2021 @ 11:59PM (Midnight) 
Starter Code:​ ​https://github.com/stanford-futuredata/cs245-as3-public 
Link to class Gradescope:​ ​https://www.gradescope.com/courses/218759 

Overview 
In our lectures on Failure Recovery ​[1]​ ​[2]​, we discussed techniques for ensuring consistency and fault 
tolerance in databases. In this assignment, you’ll use write-ahead redo logging combined with persistent 
storage to implement failure recovery for a simple key-value store. The result will be a database with 
atomic transactions that can resume after a crash while guaranteeing external consistency. You’ll also 
implement log truncation to reduce the amount of work required for recovery after a crash. 
 
We have implemented the write-ahead log as well as a persistent storage engine for you, and you should 
not modify these implementations. We have also started you off with a transaction manager that ensures 
transactions are atomic. Your modifications in this assignment will add durability to the transaction 
manager so that it can recover after crashes. 
 
To test your solution, we will simulate persistence by keeping the “persisted” data in the log and the 
storage engine in-memory. Unpersisted data and the transaction manager are both destroyed during a 
simulated crash. The test code will reinitialize the transaction manager you implement, which should 
restore any committed writes from what data was persisted. 

Setup 
Software Dependencies 

● As in assignment 1, you should use ​Java 11​. If your IDE prompts you to select a version of JUnit, 
you should choose JUnit 4. 

 
It’s ​highly recommended​ you run the tests through an IDE like IntelliJ. You will get better log output and 
stack traces. To do so, right click the test or whole file in the IDE and click “Run.” 
 
To build the code and run tests on the command line (rather than in an IDE), run 
mvn package 
java -Xmx1536m -Xms1536m -jar target/tests.jar 

To submit the code, run 
create_submission.sh 

This will create a file called ​student_submission.zip​ that you should upload to Gradescope. 

https://github.com/stanford-futuredata/cs245-as3-public
https://www.gradescope.com/courses/218759
http://web.stanford.edu/class/cs245/slides/10-Transactions-and-Recovery.pdf
http://web.stanford.edu/class/cs245/slides/11-Recovery-p2.pdf
https://www.oracle.com/java/technologies/javase-jdk11-downloads.html


 

Part I (70% of your grade): Implementing Durable Transactions 
For this part, you will be exclusively modifying ​TransactionManager.java ​ (in 
src/cs245/as3) ​ in order to implement fault tolerance. The starting code we have provided exposes 
the following API, and you should preserve this API and all its properties: 
 

● start(long txID) 

○ Indicates the start of a new transaction. We will guarantee that txID always increases 
(even across crashes). 

● read(long txID, long key) 

○ Returns the latest committed value for a key by any transaction. 
● write(long txID, long key, byte[] value) 

○ Indicates a write to the database. Note that such writes should not be visible to ​read() 
calls until the transaction making the write commits. For simplicity, we will not make 
reads to this same key from txID itself after we make a write to the key.  

● commit(long txID) 

○ Commits a transaction, and makes its writes visible to subsequent read operations. 
● abort(long txID) 

○ Aborts a transaction. 
● writePersisted(long key, long tag, byte[] value) 

○ You can ignore this call for now; we will describe it in Part 2 of the assignment. 
 
Additionally, you must implement one method, which is the initialization and recovery API for 
TransactionManager: 
 

● initAndRecover(LogManager lm, StorageManager sm) 

○ Initializes your transaction manager with the provided log manager and storage manager. 
We will call this method during testing with our own instantiations of LogManager and 
StorageManager. We guarantee that this method will be called before any other calls to 
the methods of TransactionManager. 

 
As a first step, we recommend going through TransactionManager and understanding how it currently 
implements atomic transactions. Note that reads should ​always return the latest-committed value​ for a 
particular key and writes are always committed atomically, assuming there is no crash. You should​ ​not 
attempt to validate read or write sets during commit​ ​to provide a different transactional isolation level 
from the TransactionManager we provide. If you run the JUnit tests, all the transaction tests should 
succeed but any of the Recovery-related tests should fail. 
 
During part 1 of this assignment, you are adding durability to the transactions provided by 
TransactionManager. This means that transactions that have successfully committed should remain 
committed after a crash. You will achieve this by having your TransactionManager implementation call 
methods in the LogManager and StorageManager classes (which we provide). 



 

 
The LogManager and StorageManager classes have different persistence guarantees. The log can only be 
modified by appending ​log records​. Log records are limited size byte arrays with a format that you will 
design. Appending a log record is atomic and blocks until the append is persisted. The storage manager in 
contrast persists changes asynchronously, where writes to the same key are persisted in-order, but writes 
to different keys can be persisted out of order. The APIs for these classes are: 
 

● LogManager 
○ appendLogRecord(byte[] record) 

■ Atomically appends and persists record to the end of the log (implying that all 
previous appends have succeeded). 

■ Returns the log length prior to the append. 
■ Log records have a maximum length of 128 bytes. 

○ getLogEndOffset() 

■ Returns the log offset after the last append. 
○ readLogRecord(int position, int size) 

■ Returns the slice of the log [position, position+size). Throws an 
ArrayIndexOutOfBoundsException ​ if any index in the range is past the 
end of the log or truncated. 

○ setLogTruncationOffset(int offset) 

■ Durably stores the offset as the current log truncation offset and truncates 
(deletes) the log up to that point. You can ignore this until part 2 of this 
assignment. 

○ getLogTruncationOffset()  

■ Returns the current log truncation offset. You can ignore this until part 2 of this 
assignment. 

● StorageManager 
○ queueWrite(long key, long tag, byte[] value) 

■ You should use ​log offsets​ as your tags, but they are not necessary until part 2 of 
this assignment. 

■ Writes to ​different​ keys may be persisted out of order with respect to the order of 
calls to ​queueWrite ​, but writes to the ​same​ key will be persisted in order with 
respect to ​queueWrite ​. Conceptually, you can think of this as each key having 
a separate queue from which writes are drained in order, but with no guarantees 
on ordering between queues. 

■ The storage manager will invoke the ​writePersisted() ​ callback on your 
transaction manager whenever each write is persisted, in order of their 
persistence. You can ignore this until part 2 of this assignment. 

○ Map<Long, TaggedValue> readStoredTable() 

■ Returns the mapping of keys to value persisted before the last crash. Returns an 
empty map for the first initialization of the database. 

 



 

You should consider how you can use the interface of the LogManager and the StorageManager to store 
writes. You will need to design a serialization format for storing writes in the form of log records. We 
recommend ​buffering writes until commit​, i.e. only writing changes to the LogManager and 
StorageManager during commit. We also recommend using ​redo logging​, that is, include the newly 
written value in your log record format (in contrast to undo logging, where the prior value is written to the 
log.) Because appends have a maximum length, you will need to consider how to split a transaction’s 
writes across multiple records (see the other important details about workloads below - you should never 
need to split an individual ​write() ​ call across records, for example.)  
 
Note that in order for your implementation to be correct, you ​must queue writes to the storage 
manager​; it is not sufficient to recover based on the log alone. 
 
Tip:​ Use these classes to serialize objects into byte arrays. 
● ByteBuffer 
● ByteArrayOutputStream 

 
Tip:​ Implement a custom Record class that can be serialized to ​byte[] ​ and deserialized from ​byte[] ​. 
(Do not use Java’s built-in serialization functions to do this. You should write your own serialization 
function that packs records into byte arrays.) 
 
Finally, you will implement recovery in the ​initAndRecover() ​ method. At this point all of the 
recovery correctness tests should succeed, but the recovery performance tests might not. 
 
Important details:  
 

● Data format 
○ Keys are longs 
○ Log offsets are ints 
○ Values are byte arrays.  

● Test workloads properties: 
○ The total number of write() calls across all transactions in a workload will be at most 1 

million. And, each test will start at most 1 million transactions.  
○ Each transaction will involve at most 1000 calls to ​write() ​, and the length of each 

written value will be at most 100 bytes. 
○ The maximum number of concurrent open transactions at any time is 10. 
○ We will not make reads to this same key within a transaction with the same txID after we 

make a write to that key.  
○ We limit the log offset to 1Gb, which you should not reach on any of the workloads 

assuming your record format is not too wasteful. 
 
On the ​first​ call to ​initAndRecover ​ within a test, we guarantee that the log and database will be 
empty. In subsequent calls to ​initAndRecover ​ after a crash, we guarantee that the log passed to your 
TransactionManager will be your log, unmodified, from before the crash, and that the database will be in 

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/nio/ByteBuffer.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/ByteArrayOutputStream.html


 

some state consistent with that log. (In short, you should feel free to use custom serialization formats and 
metadata for the log values, which you will be able to parse at recovery time.) 

 
All methods of LogManager and StorageManager may crash by throwing a RuntimeException. These 
simulate hard-stop crash failures, such as a power-outage. You ​should not catch​ ​these​ in your 
implementation of TransactionManager and instead simply allow the test code to handle the exception. 
You can assume that after any crashes, there will be no further calls to the TransactionManager that had 
the failed request. Rather, the test code will always construct a fresh instance of TransactionManager, and 
then enter recovery, before calling any methods of TransactionManager. 
 
You also ​must​ ​not store state in static members​ of TransactionManager that might be used for 
recovery. The spirit of the assignment is that a fresh TransactionManager comes up after a crash and 
resumes transaction processing using only the data persisted in the LogManager and StorageManager. 
Solutions that don’t match this spirit will be penalized. 

Part 2 (30% of your grade): Truncating the Log and Fast Recovery 
In this part of the assignment, you will truncate the log to reduce the cost of recovery. The 
StorageManager will call ​writePersisted ​ whenever a queued write is persisted. You will need to 
implement some way to track which committed writes are not yet stored durably by the StorageManager. 
From this information you should be able to derive a ​safe log truncation point​, one that does not go past 
the point of any write in the log that has not yet been persisted to the StorageManager. You should then 
periodically (i.e. in your implementation of ​writePersisted ​) call ​setLogTruncationPoint ​ on 
the log manager to truncate the log. On recovery, you should resume recovery from the last log truncation 
point. Your goal is to minimize the number of times you need to read from the log in order to recover. 
 
At this point, the ​recoveryPerformance ​ test should succeed as well. This test will check that the 
log is being truncated during operation and that recovery uses a small number of read I/Os to the log. 

(Optional) Optimization Challenge 
Once all of the correctness and recovery tests pass, you can try to optimize your solution to minimize the 
number of ​write ops​ your transaction manager makes to the log per transaction. You can see the 
benchmark in the file LeaderboardTests.java. It commits several transactions that each make 500 small 
writes. To qualify for the leaderboard for this challenge, your implementation must first pass all of the 
correctness tests. We will give bonus points to especially efficient solutions, but you can get full points on 
the assignment without doing this challenge.  

Submission Instructions 
See ​README.md ​. 


