
Array Programming
CS242

Lecture 15

Alex Aiken CS 242 Lecture 15

Review

• We’ve studied two function-based programming calculi
• SKI combinators
• Lambda Calculus

• In practice, lambda calculus has proven far more popular
• The basis for functional languages
• Used to model and understand most programming features

• State, exceptions, continuations, …

• But combinator programming is not just theoretical

Alex Aiken CS 242 Lecture 15

Overview

• In practice, combinator programming is used most with collections
• And particularly arrays

• Benefits
• Conciseness: Bulk operations over the entire collection

• Iteration/recursion is “baked in” to the operations
• Performance: Leave the details of the implementation the underlying system

• Might be very different for different hardware, e.g., CPUs or GPUs

Alex Aiken CS 242 Lecture 15

An Example

• Two combinators
• o function composition
• map apply a function to every element of a list/array

• Semantics
• map f [1, 2, 3] = [f 1, f 2, f 3]
• map (+ 1) [1, 2, 3] = [2, 3, 4]

Alex Aiken CS 242 Lecture 15

Consider the program:

(map f) o (map g)

In a conventional language

array a[n],b[n],c[n]
for i = 1,a.len {
 b[i] = f(a[i])
}
for j = 1,a.len {
 c[j] = g(b[j])
}

Alex Aiken CS 242 Lecture 15

Comparison, Part I

Consider the program:

(map f) o (map g)

Much more concise!

Why: Conventional version uses general
control structures. Combinator version
uses a higher-order function (map) that
captures exactly the specific iteration
pattern needed.

In a conventional language

array a[n],b[n],c[n]
for i = 1,a.len {
 b[i] = f(a[i])
}
for j = 1,a.len {
 c[j] = g(b[j])
}

Alex Aiken CS 242 Lecture 15

Comparison, Part I
Consider the program:

(map f) o (map g)

Easier to optimize!

An algebraic law:
(map f) o (map g) = map (f o g)

This transformation eliminates the intermediate
list/array.

Much harder to recognize when written with explicit
for-loops.

In a conventional language

array a[n],b[n],c[n]
for i = 1,a.len {
 b[i] = f(a[i])
}
for j = 1,a.len {
 c[j] = g(b[j])
}

Alex Aiken CS 242 Lecture 15

A Digression

An algebraic law:
(map f) o (map g) = map (f o g)

But what if we are programming in some monad?

E.g., with state or exceptions?

Alex Aiken CS 242 Lecture 15

History (Review)

• First combinator-based programming language was APL
• “A Programming Language”
• Designed by Ken Iverson in the 1960’s

• Designed for expressing pipelines of operations on bulk data
• Array programming
• Basic data type is the multidimensional array

• The average of a vector of numbers:

Alex Aiken CS 242 Lecture 3

APL’s Legacy

• Marketed by IBM starting in 1968
• Eventually other companies also

offered APL products

• Very influential
• At least 50 subsequent array

programming langauages
• Recent increased interest with the

rising importance of array-based
applications (e.g., deep learning) and
GPUs

• Trivia: You can buy special APL
keyboards today!

Alex Aiken CS 242 Lecture 15

From APL to NumPy

• In practice, combinator programming is used most with collections
• And particularly arrays

• Benefits
• Conciseness: Bulk operations over the entire collection

• Iteration/recursion is “baked in” to the operations
• Performance: Leave the details of the implementation to the underlying system

• Might be very different for different hardware, e.g., CPUs or GPUs

• The most popular of these interfaces today is NumPy
• But note, python has imperative features
• So programs tend to be a mix of styles, including using variables, state, etc.

Alex Aiken CS 242 Lecture 3

A Brief NumPy Tutorial

A short overview of NumPy arrays

• Defining
• Shape
• Broadcasting
• Views
• Filters

Alex Aiken CS 242 Lecture 15

Using NumPy

This line will always appear in a NumPy program
import numpy as np

Alex Aiken CS 242 Lecture 15

Defining an Array

import numpy as np

initialize an array A of 10 elements with the integers 0..9
A = np.arange(0,10)

Alex Aiken CS 242 Lecture 15

Example: Adding Arrays

import numpy as np
A = np.arange(0,10)

addition is pointwise if the dimensions match
np.add(A,A)

Alex Aiken CS 242 Lecture 15

Reshaping
import numpy as np
A = np.arange(0,10)

Reshaping is a general operation that changes array dimensions.
Normally defines a view: creates an alias of the array -- does
not make a copy.

view the elements of A as a 2x5 array
A.reshape(2,5)

view the elements of A as a 10x1 (column) array
A.reshape(10,1)

Note that reshaping would be very difficult in a static type system!

Alex Aiken CS 242 Lecture 15

Example: Outer Product

import numpy as np
A = np.arange(0,10)

We can use a combination of reshape and broadcast to define a
concise outer product.

np.multiply(A,A.reshape(10,1))

Alex Aiken CS 242 Lecture 15

Broadcasting

• Broadcasting takes two arrays of possibly different dimensions and casts them to arrays
of the same dimension

• Rules for broadcast in an array operation A op B
• If one array has fewer dimensions, add dimensions of size 1 until both have the same number of

dimensions
• For each dimension i

• If A and B have the same size in dimension i, do nothing
• If one of A and B has size 1 in dimension i, replicate data in the dimension to the same size as the other array
• If A and B have different sizes in dimension i and neither is 1, throw an error

• Example
• A * 5
• The 5 (a 0-D array) is promoted to a 1-D array of 5’s of the same length as A

Alex Aiken CS 242 Lecture 15

Slicing

import numpy as np
A = np.arange(0,10)

slicing defines views (aliases) of subsets of an array
A[3:] # slice of 4th element to the end of the array
A[:-3] # slice up to the 4th element from the end of the array
A[1:-1] # slice of all but the first and last elements of the array
A.reshape(2,5)[:,1:3] # slicing in multiple dimensions
A.reshape(2,5)[0:2,1:3] # same slice written a different way

Alex Aiken CS 242 Lecture 15

Example: Moving Average

import numpy as np
A = np.arange(0,10)

cumulative sum is one of many NumPy built-in array functions
B = np.cumsum(A)

moving average of A with a window of size 3
(B[3:] – B[:-3]) / 3.0

Alex Aiken CS 242 Lecture 15

Masks

import numpy as np
A = np.arange(0,10)

Using an array in a predicate returns an array of Boolean results
Here broadcasting promotes 5 to a 1D array of 5’s
A > 5
A <= 5
(2 * A) == (A ** 2)

Alex Aiken CS 242 Lecture 15

Filters

import numpy as np
A = np.arange(0,10)

Boolean arrays can be used as array indices to filter arrays
A[A > 5] # elements of A that are > 5
A[A <= 5] # elements of A that are <= 5
A[(2 * A) == (A ** 2)] # elements x of A where 2*x == x ** 2

Alex Aiken CS 242 Lecture 15

A Bigger Example: The Game of Life

• The Game of Life is played on 2D grid in time steps

• Grid cells are either live or dead

• A cell is live or dead at time t+1 based on
 its neighbors at time t
• Cells at the world’s edge are always dead

• Defined by George Conway in 1969
• An early example of cellular automata

Alex Aiken CS 242 Lecture 15

Rules

• A live cell with < 2 neighbors dies
• From loneliness

• A live cell with > 3 neighbors dies
• From overcrowding

• A live cell with 2 or 3 neighbors survives

• A dead cell with 3 neighbors becomes live

Alex Aiken CS 242 Lecture 15

Time t

Time t+1

The Game of Life

import numpy as np
Z = np.zeros((300, 600))
Z[1:-1,1:-1] = np.random.randint(0,2,np.shape(Z[1:-1,1:-1])) # 0 is dead, 1 is live

while True:
 N = (Z[0:-2, 0:-2] + Z[0:-2, 1:-1] + Z[0:-2, 2:] +
 Z[1:-1, 0:-2] + Z[1:-1, 2:] +
 Z[2: , 0:-2] + Z[2: , 1:-1] + Z[2: , 2:])

 birth = (N == 3) & (Z[1:-1, 1:-1] == 0)
 survive = ((N == 2) | (N == 3)) & (Z[1:-1, 1:-1] == 1)
 Z[:,:] = 0
 Z[1:-1, 1:-1][birth | survive] = 1

Alex Aiken CS 242 Lecture 15

Picture
 N = (Z[0:-2, 0:-2] + Z[0:-2, 1:-1] + Z[0:-2, 2:] +

 Z[1:-1, 0:-2] + Z[1:-1, 2:] +
 Z[2: , 0:-2] + Z[2: , 1:-1] + Z[2: , 2:])

Alex Aiken CS 242 Lecture 15

Summing these 8 subarrays
computes the number of live
neighbors for each cell in the
interior of the space.

Explanation

…
 # N is a 2D array of the number of neighbors of each cell
 # birth is a 2D Boolean array; a cell is true if it is has 3 neighbors and is dead
 birth = (N == 3) & (Z[1:-1, 1:-1] == 0)

 # survive is a 2D Boolean array; a cell is true if it is has 2 or 3 neighbors and is live
 survive = ((N == 2) | (N == 3)) & (Z[1:-1, 1:-1] == 1)

 # create a new generation
 # the interior cells of Z are live if they are born or survive the previous time step
 Z[:,:] = 0
 Z[1:-1, 1:-1][birth | survive] = 1

Alex Aiken CS 242 Lecture 15

The Game of Life

import numpy as np
Z = np.zeros((300, 600))
Z[1:-1,1:-1] = np.random.randint(0,2,np.shape(Z[1:-1,1:-1])) # 0 is dead, 1 is live

while True:
 N = (Z[0:-2, 0:-2] + Z[0:-2, 1:-1] + Z[0:-2, 2:] +
 Z[1:-1, 0:-2] + Z[1:-1, 2:] +
 Z[2: , 0:-2] + Z[2: , 1:-1] + Z[2: , 2:])

 birth = (N == 3) & (Z[1:-1, 1:-1] == 0)
 survive = ((N == 2) | (N == 3)) & (Z[1:-1, 1:-1] == 1)
 Z[:,:] = 0
 Z[1:-1, 1:-1][birth | survive] = 1

Alex Aiken CS 242 Lecture 15

Summary

• Combinator calculi are important in practice for array/collection
programming
• Where thinking in terms of bulk operations with built-in iteration is useful
• Often useful in parallel implementations

• Because the combinators can be high-level enough that the programmer doesn’t need to
be aware of parallelism at all

• Combinators are also important in program transformations
• Much easier to design combinator-based transformation systems
• Some compilers (Haskell’s GHC) even translate into an intermediate

combinator-based form for some optimizations

Alex Aiken CS 242 Lecture 15

