
Logic Programming
CS242

Lecture 12

Alex Aiken CS 242 Lecture 12

Alex Aiken CS 242 Lecture 12

Overview

• Logic is the study of correct arguments.
• Logic and computation are connected:

• If a proof of the claim is constructive, then for every x we can
compute a y

),(.. yxPyx $"

Alex Aiken CS 242 Lecture 12

Example

• For every list x of integers, there is a list y with the same elements
arranged in non-descending order

• A constructive proof is an algorithm for sorting lists of integers

• There are proofs that are not constructive
• Prove something is true, but don’t produce a “witness”, a thing exhibiting the

truth of the statement
• But that is a topic for a future lecture …

Alex Aiken CS 242 Lecture 12

Logic Programming

• PROLOG
• PROgramming in LOGic
• Motivated by study of constructive reasoning
• Most popular logic programming language

• Logic programming started in the ‘70’s
• Logic programming was big in the ‘80’s
• 5th generation project (Japan)

• Many applications today in specialized domains
• Databases, scheduling problems in transportation

Alex Aiken CS 242 Lecture 12

PROLOG Basics

• PROLOG is a theorem prover
• Consider a predicate rev(x,y)
• “y is x reversed”
• rev([1,2,3],[3,2,1]) returns “true”

• More usefully rev([1,2,3],y) returns true and substitution y=[3,2,1]

• Intuitively, x is the input, y is the output

Alex Aiken CS 242 Lecture 12

No Input/Output Distinction

• But logic programming is more general.
• y can be the input and x the output:
• rev(x,[1,2,3]) returns “true” and x=[3,2,1]

• Or y and x both can be partially defined:
• rev([1,2,a],[3,2,b]) returns true and a=3, b=1

• A computation attempts to satisfy a predicate by computing a
substitution for the free variables

Alex Aiken CS 242 Lecture 12

Syntax

• PROLOG has terms and atoms.
• A term is
• a constant (e.g., 1 or nil)
• a variable
• c(x,y,z) where

• c is a constructor (of the correct arity)
• x,y,z are terms

• An atom is a predicate applied to terms
• rev([1,2,3], y)

Alex Aiken CS 242 Lecture 12

Lists

• Lists have special syntax
• cons(x,cons(y,nil)) = [x,y]

Alex Aiken CS 242 Lecture 12

Programs

• A PROLOG program has facts and rules

• A rule has the form
P1(t11, …) :- P2(t21,…),…,Pn(tn1,…)

• The meaning of a rule (or clause) is
P2(t21,…) Ù … Ù Pn(tn1,…) Þ P1(t11, …)

• A fact is a rule with no rhs. Facts are always true.
P1(t11, …).

Alex Aiken CS 242 Lecture 12

Reverse in PROLOG

addright(nil, X, [X]).

addright(cons(A,B), X, cons(A,Z)) :- addright(B,X,Z)

rev(nil, nil).

rev(cons(X,Y), Z) :- rev(Y,W), addright(W,X,Z)

Alex Aiken CS 242 Lecture 12

Semantics

• Logic programming has a beautiful semantics.
• Let range over all ground substitutions
• Substitutions that map variables to terms with no variables in them

• Given a set of rules

• The semantics is the smallest set of atoms F satisfying

,...)(tP...,,...),(tP:,...)(tP n1n212111 -

() (){ } () FF ÎÞÍ ,...)(tP,...)(tP...,,,...)(tP 111n1n212 sss

s

Alex Aiken CS 242 Lecture 12

Semantics (Continued)

• This is the Herbrand model
• after the Herbrand Universe, the set of all terms

• Note the semantics is defined bottom-up:
• all facts are in F
• any implication proven by atoms in F is in F

Alex Aiken CS 242 Lecture 12

Implementations

• Logic programming has
• a very concise and well-defined semantics
• implementations that do not follow the semantics

• Efficiency is a major problem in many logic programming languages

• Leads to compromises in implementations

Alex Aiken CS 242 Lecture 12

PROLOG Implementation

• Start with simple things and work up.
• The following example is from Kamin’s book Programming

Languages: An Interpreter-Based Approach

imokay :- youreokay, hesokay

youreokay :- theyreokay

hesokay.

theyreokay.

Alex Aiken CS 242 Lecture 12

Execution

• Rule: Given a goal a, find a rule whose left-hand side matches a. Add
the right-hand side atoms as subgoals

• Goal imokay yields true:
• imokay matches imokay :- youreokay, hesokay
• youreokay, hesokay are subgoals
• Rule is applied recursively to subgoals

• youreokay matches youreokay :- theyreokay
• hesokay and theyreokay are both facts

imokay :- youreokay, hesokay

youreokay :- theyreokay

hesokay.

theyreokay.

Alex Aiken CS 242 Lecture 12

d youreokay

d imokay

d hesokay

d theyreokay

Multiple Matches

• PROLOG works from goals
towards facts.
• Goals are replaced by subgoals

according to the rules.

• What if more than one rule
matches a goal?

• Add three rules to our program

Alex Aiken CS 242 Lecture 12

imokay :- youreokay, hesokay

youreokay :- theyreokay

hesokay.

theyreokay.

hesnotokay :- imnotokay

shesokay :- hesnotokay

shesokay :- theyreokay

Alex Aiken CS 242 Lecture 12

Rule Order and Backtracking

• Refine Rule: Select the first matching rule.
• “first” means first textually
• if a subgoal fails, select the next matching rule
• if no matching rule is found, fail.

• This is backtracking
• The first matching rule not already tried is always chosen

Example

• To prove shesokay:
• Goal matches shesokay :-

hesnotokay
• Subgoal hesnotokay matches

hesnotokay :- imnotokay
• imnotokay fails (no matching rule),

backtrack.
• hesnotokay fails, backtrack

• Goal matches shesokay :- theyreokay
• theyreokay is a fact.

imokay :- youreokay, hesokay

youreokay :- theyreokay

hesokay.

theyreokay.

hesnotokay :- imnotokay

shesokay :- hesnotokay

shesokay :- theyreokay

Alex Aiken CS 242 Lecture 12

Example

imokay :- youreokay, hesokay

youreokay :- theyreokay

hesokay.

theyreokay.

hesnotokay :- imnotokay

shesokay :- hesnotokay

shesokay :- theyreokay

Alex Aiken CS 242 Lecture 12

d hesnotokay

d shesokay

d imnotokay

?

Example

imokay :- youreokay, hesokay

youreokay :- theyreokay

hesokay.

theyreokay.

hesnotokay :- imnotokay

shesokay :- hesnotokay

shesokay :- theyreokay

Alex Aiken CS 242 Lecture 12

d theoyreokay

d shesokay

Alex Aiken CS 242 Lecture 12

Proof Trees

• PROLOG attempts to build a proof tree starting from the goal
• The clauses are the inference rules
• The atoms are the axioms

• PROLOG execution is proof search
• Try all possible proofs until success or exhaustion

Alex Aiken CS 242 Lecture 12

Incomplete Proof Search

• PROLOG semantics implies breadth-first search of the tree
• Finds a proof if one exists

• Breadth-first is very slow

• Implementations use depth-first
• May lead to non-termination
• Consider adding the rule hesnotokay :- shesokay
• Now the goal shesokay loops, even though it remains provable

Example

imokay :- youreokay, hesokay
youreokay :- theyreokay
hesokay.
theyreokay.
hesnotokay :- shesokay
hesnotokay :- imnotokay
shesokay :- hesnotokay
shesokay :- theyreokay

Alex Aiken CS 242 Lecture 12

d hesnotokay

d shesokay

d shesokay

d …

Alex Aiken CS 242 Lecture 12

Substitutions

• In general, execution must also compute a substitution for the
variables of a goal

• Revised rule: To satisfy a goal g, find the first untried rule G :- H1,…,Hn
such that s1 = unify(g,G)
• unify computes a substitution s1 such that s1(g) = s1(G)
• Add s1(H1) as a subgoal.
• If s1(H1) succeeds, it returns a substitution s2
• Add s2(s1(H2)) as a subgoal, repeat.
• If all subgoals succeed, result is the substitution sn o … o s2 o s1

Alex Aiken CS 242 Lecture 12

Backtracking Revisited

• A new form of backtracking arises with substitutions

• Consider a rule G :- H1,H2,…,Hn
• If s1(H2) fails, maybe H1 could succeed with a different substitution s1’

• Maybe H1 could be proven using a different rule with a different substitution s1’
• We must try all possible ways to prove H1 using different rules to try to prove

H2
• In general, backtracking must be done within a single right-hand side to

ensure all possible ways of satisfying subgoals are tried

Alex Aiken CS 242 Lecture 12

Example, Part 1
Goal: rev(cons(1,cons(2,nil)), A)

Rule: rev(cons(X,Y),Z) :- rev(Y,W), addright(W,X,Z)

unify(rev(cons(1,cons(2,nil)),A),rev(cons(X,Y),Z)) = {X=1, Y=cons(2,nil), A=Z}

 Goal: rev(cons(2,nil),W)

 Rule: rev(cons(X1,Y1),Z1) :- rev(Y1,W1), addright(W1,X1,Z1)

 unify(rev(cons(2,nil),W),rev(cons(X1,Y1),Z1)) = { X1=2, Y1=nil, Z1 = W}

Alex Aiken CS 242 Lecture 12

Example, Part 2

 Goal: rev(nil,W1)

 Rule: rev(nil,nil).

 unify(rev(nil,W1),rev(nil,nil)) = { W1= nil }

 Goal: addright(nil,2,W)

 Rule: addright(nil,X2,[X2]).

 unify(addright(nil,2,W), addright(nil,X2,[X2])) = { X2=2, W=[2] }

Alex Aiken CS 242 Lecture 12

Example, Part 3

 Goal: addright(cons(2,nil),1,A)

 Rule: addright(cons(A3,B3),X3,cons(A3,Z3)) :- addright(B3,X3,Z3)

 unify: … { A3=2, B3=nil, X3=1, A=cons(2,Z3) }

 Goal: addright(nil,1,Z3)

 Rule: addright(nil,X4,[X4]).

 Unify: … { X4=1, Z3=[1] }

The answer is A in the final substitution: A = [2,1]

Alex Aiken CS 242 Lecture 12

The Occurs Check

• PROLOG deviates from the semantics in ways besides using depth-
first search

• The semantics only allows finite terms in substitutions.
• Requires an occur check on a = T to ensure a does not occur in T
• The occurs check is expensive and claimed to be rarely needed
• Most implementations omit the occurs check

Alex Aiken CS 242 Lecture 12

Cut

• Backtracking can be expensive, so PROLOG includes a feature !
(pronounced “cut”) to control it

• Consider A :- B, C, !, D
• PROLOG will not backtrack past a !
• If D fails, the implementation will not attempt to resatisfy B and C
• The entire rhs fails immediately

• Controlling backtracking is critical to writing respectably efficient
PROLOG programs.

Alex Aiken CS 242 Lecture 12

Discussion

• The building blocks of PROLOG implementations are:
• matching to select clauses that could satisfy a goal
• unification
• backtracking

• Implementations are sensitive to the order of rules and the order of
subgoals on rule right-hand sides

• Cut provides even more control

Alex Aiken CS 242 Lecture 12

Opinions

• Logic programming is interesting.
• At best:
• very declarative
• very easy to write certain programs (e.g., search)

• At worst:
• ideas of “algorithm” and “complexity” are obscured

• really just one algorithm, exponential proof search
• performance relies on tricky rule/goal orderings:

• not very scalable
• obscure

Alex Aiken CS 242 Lecture 12

More Opinions

• Logic programming languages are usually untyped or only weakly
typed

• Difficult to design reasonably strong type systems

Alex Aiken CS 242 Lecture 12

Logic Programming Today

• Popularity in the ‘80’s to bust in the ‘90’s
• General purpose logic programming is out of fashion

• But special-purpose logic programming is commercially important
• Domain-specific logic languages for scheduling

• airline crews, trucking, manufacturing, chip design
• Use search techniques and constraint languages to solve NP-hard problems

• Databases
• Programming languages

• Type inference!

