
Rust: Types for Aliasing
Control

CS242
Lecture 11

Alex Aiken CS 242 Lecture 11

Today’s Topics

• Motivation: Memory safety

• Aliasing
• Classical approaches to aliasing control

• Rust
• Type-based aliasing control in a practical language

Alex Aiken CS 242 Lecture 11

Memory Safety

• Memory safety is the property that pointers or references point to
objects of the correct type

• Memory safety bugs plague systems written in languages with manual
memory management
• Double-frees, wild pointers, and out-of-bounds accesses
• Primarily C/C++

Alex Aiken CS 242 Lecture 11

Example

int *foo(int v) {
 int *ptr = (int *) malloc(sizeof(int));

 int err = initialize_int(ptr,v);
 if (err != 0) free(ptr);

 return ptr;

}

Alex Aiken CS 242 Lecture 11

Example

int *foo(int v) {
 int *ptr = (int *) malloc(sizeof(int));

 int err = initialize_int(ptr,v);
 if (err != 0) free(ptr);

 return ptr;

}

void bar() {
 int *p = foo(42);

 … *p … // wild pointer
 …

 free(p); // double free

 …
}

Alex Aiken CS 242 Lecture 11

How Can Memory Safety Be Assured?

• Three options:

• Automatically via dynamic garbage collection
• Systematic but unenforced programming disciplines
• Automatically via a static type system

Alex Aiken CS 242 Lecture 11

Garbage Collection (GC)

• Three key properties
• Deallocation is done automatically, not by the programmer

• Many versions, all exploit: objects that will never be used again are safe to deallocate
• No pointer arithmetic allowed

• A reference is a pointer without pointer arithmetic
• Guarantees the program cannot compute a pointer that GC doesn’t know about

• Indexing into arrays is bounds-checked

• Upside: Memory safe!

• Downside is performance costs of various kinds:
• Bounds checks are expensive
• Often inefficient for applications where the working set is a large fraction of memory
• Unpredictable delays for GC

Alex Aiken CS 242 Lecture 11

Who Deallocates?

Consider a function call:

 void my_func() {
 int *ptr = (int *) malloc(sizeof(int));
 *ptr = 42;
 api_call(ptr);
 …
 }

• Both my_func and api_call hold pointers to the integer
• Which is responsible for deallocating the memory?

Alex Aiken CS 242 Lecture 11

The Ownership Programming Discipline

• Designers of large systems have always needed to talk about the
system’s rules for memory management
• In particular, who is responsible for deallocating memory

• The ownership discipline is the most popular approach
• One pointer is considered the owner of an allocated block of memory
• The owner, and only the owner, is responsible for deallocating the block
• Since every block has a unique owner, the risk of memory management errors

is greatly reduced

Alex Aiken CS 242 Lecture 11

Back to the Example …

Consider a function call:

 void my_func() {
 int *ptr = (int *) malloc(sizeof(int));
 *ptr = 42;
 api_call(ptr);
 …
 }

 api_call(int *p) { … }

• Who is the owner, ptr or p?

• Answer: It depends, and the
answer is different in different
circumstances

• But ownership at least gives
terminology for discussing
desired memory management
policies

Alex Aiken CS 242 Lecture 11

Back to the Example …

Consider a function call:

 void my_func() {
 int *ptr = (int *) malloc(sizeof(int));

 *ptr = 42;

 api_call(ptr);
 … more code …

 }

 api_call(int *p) { … }

• Last use of ptr is in “more code”
• ptr should be the owner

• Last use is in api_call
• p could be the owner

• api_call stores a pointer p’ to the
memory in a global data structure
• p’ should be the owner

Alex Aiken CS 242 Lecture 11

Ownership Programming Discipline

• Each allocated object/memory block has a unique owner

• Ownership rules for a given system often documented in comments
• E.g., for each pointer passed to an API

• But nothing enforces correct use
• It is up to programmers to understand and respect the rules laid down for a

specific system

Alex Aiken CS 242 Lecture 11

A Key Concept: Aliasing

 void my_func() {
 int *ptr = (int *) malloc(sizeof(int));

 *ptr = 42;
 api_call(ptr);

 …

 }

 api_call(int *p) { … }

• Notice that ptr and p are two
different names for the same
memory location

• We say ptr and p are aliases

Alex Aiken CS 242 Lecture 11

ptr p

42

A Key Concept: Aliasing

 void my_func() {
 int *ptr = (int *) malloc(sizeof(int));
 *ptr = 42;
 api_call(ptr);
 …
 }

 api_call(int *p) { … }

• The modern view is that aliasing is
a core issue
• For memory safety and other things

• When trying to understand a piece
of code with a pointer p, we
generally do not know:
• Are there aliases of p?
• How long do aliases exist - do their

lifetimes overlap with p?
• Are aliases of p read, written or

deallocated?

Alex Aiken CS 242 Lecture 11

Aliasing Control

Alex Aiken CS 242 Lecture 11

A Classic Example

copy(char *x, char *y) {
 ...
}

Alex Aiken CS 242 Lecture 11

But what about copy(a,a)?

A Classic Example

copy(restrict char *x, restrict char *y) {
 ...
}

Semantics: In C, a restricted pointer cannot be aliased to any other
pointer in scope.

Alex Aiken CS 242 Lecture 11

A Point of View

• Aliasing is bad

• State can be modified through one name and those changes are
visible through a different name
• Leads to subtle and difficult bugs

• But aliasing is very common in real programs
• Impossible to avoid
• E.g., references passed as arguments to functions
• Object-oriented code is particularly prone to generating aliasing

Alex Aiken CS 242 Lecture 11

Idea #1

• Maybe aliasing is not the problem ...

• Problems arise only when aliasing is combined with mutation
• That is, the ability to write/update state

• So, disallow mutation!
• Can’t get surprises from aliases if only reads are allowed
• The pure functional programming viewpoint

Alex Aiken CS 242 Lecture 11

Could Outlawing Mutation Really Work?

• People have studied pure functional languages for decades
• No mutation, whenever a data structure is changed a copy is made

• A surprising number of computational problems have very efficient algorithms
without mutation of state
• Sometimes just amortized bounds, but that is still quite good!

• But there are some operations that seem to fundamentally require mutation to
be efficient
• Update in place of an array is O(1)
• The best known functional update is O(log N) in the size of the array

Alex Aiken CS 242 Lecture 11

A Practical Approach

• Split the world into mutable and immutable values

• Rust
• let x = 5 // immutable
• let mut x = 5 // mutable
• x = 3 // only allowed if x is mutable

• ML
• let x = 5 // immutable
• let x = ref 5 // mutable
• x := 3

Alex Aiken CS 242 Lecture 11

Separating Mutable & Immutable

• Not entirely a new idea
• E.g., const in C

• Gaining in popularity
• More languages are making this distinction
• With immutability being the default

• Now accepted as a good idea
• Limit the possibility of mutation to places it is really needed
• Make these points obvious in the syntax & types

Alex Aiken CS 242 Lecture 11

Idea #2
• Control aliasing in the type system
• Track it, restrict it, or even disallow it

• Ownership types
• Track aliases using types
• Upgrades the ownership programming discipline to an enforced type discipline

• There is a large literature on ownership types
• Some quite elaborate ...

Alex Aiken CS 242 Lecture 11

Ownership in Rust

• Rust is the first widely used programming language with ownership

• There is always a single owner reference of every object
• Owning = responsible for the resources of the object

• Implications
• An object with no owner is deallocated

• When an owner goes out of scope, the owned object is deallocated
• Copies transfer ownership

• x = y removes ownership from y and transfers it to x
• y can no longer be used after the assignment

Alex Aiken CS 242 Lecture 11

Ownership Example

fn main() {
 let v = vec[1,2,3]; // v owns the vector
 let v2 = v; // moves ownership to v2
 display(v2); // ownership is moved to display
}

fn display(v:Vec<i32>){
 println!(“{}”,v);
 // v goes out of scope here and the vector is deallocated
}

Alex Aiken CS 242 Lecture 11

Ownership Example

fn main(){
 let v = vec[1,2,3]; // v owns the vector
 let v2 = v; // moves ownership to v2
 let i = v[1]; compile-time error!
 display(v2); // ownership is moved to display
 println!(“{}”,v2); compile-time error!
}

fn display(v:Vec<i32>){
 println!(“{}”,v);
 // v goes out of scope here and the vector is deallocated
}

Alex Aiken CS 242 Lecture 11

Another Ownership Example

fn a() {
let x = Foo.new(); // x is the owner
let y = bar(x); // ownership is transferred to the argument of bar
 // and then back to y
// y goes out of scope and the Foo object is deallocated
}

fn bar(z: Foo) {
 z; // ownership is transferred back to the caller
}

Alex Aiken CS 242 Lecture 11

Lifetimes

• Rust reasons about aliasing/ownership by using lifetimes

• The lifetime of a variable is the span between
• The definition (first use)
• The last use

• Rule: Lifetimes of owners of an object cannot overlap

Alex Aiken CS 242 Lecture 11

Lifetimes

fn main(){
 let v = vec[1,2,3]; // vector v owns the object
 let v2 = v; // moves ownership to v2
 // let i = v[1]; compile-time error!
 display(v2); // ownership is moved to display
}

fn display(v:Vec<i32>){
 println!(“{}”,v);
 // v goes out of scope here and the vector is deallocated
}

Alex Aiken CS 242 Lecture 11

v’s lifetime

v2’s lifetime

v’s lifetime

fn main(){
 let v = vec[1,2,3]; // vector v owns the object
 let v2 = v; // moves ownership to v2
 let i = v[1]; // compile-time error!
 display(v2); // ownership is moved to display
}

fn display(v:Vec<i32>){
 println!(“{}”,v);
 // v goes out of scope here and the vector is deallocated
}

Lifetimes: A Compile Time Error

Alex Aiken CS 242 Lecture 11

Lifetimes: A Fix

fn main(){
 let v = vec[1,2,3]; // vector v owns the object
 let i = v[1]; // now this works …
 let v2 = v; // moves ownership to v2
 display(v2); // ownership is moved to display
}

fn display(v:Vec<i32>){
 println!(“{}”,v);
 // v goes out of scope here and the vector is deallocated
}

Alex Aiken CS 242 Lecture 11

Another View

fn main() {
 let v = vec[1,2,3]; // v owns the vector
 let v2 = v; // moves ownership
 display(v2); // moves ownership
}

fn display(v:Vec<i32>){
 println!(“{}”,v);
 // v is deallocated
}

• Recall: Lifetimes of owners cannot
overlap

• Enforces a linear type discipline
• Only one name for an object is available at

any time
• Alternatively, guarantees no aliases are

simultaneously available
• No aliases => no problems with aliasing!

• Linear type systems have received a lot of
attention
• But linearity is a very strong restriction …

Alex Aiken CS 242 Lecture 11

Aliasing Control in Rust

• Disallowing simultaneously available aliases is painful in many situations
• Can never have a second name for an object or even a piece of an object
• E.g., makes it impossible to write an array iterator

• Need a name for the array and an pointer into the middle of the array
• And we often don’t need to take ownership anyway

• Most aliases are temporary and used in controlled ways

• Rust allows the creation of explicit aliases
• called borrows

• There are two kinds of borrows:
• mutable
• immutable

Alex Aiken CS 242 Lecture 11

Example: Immutable Borrow

fn a() {
let x = Foo.new(); // x is the owner
let y = &x; // y is an immutable borrow of x; x is still the owner
bar(y); // pass an immutable borrow to bar
}

fn bar(&z: Foo) {
 ... = .. z ... // can read from z in bar as many times as we like
 // let global.f = z storing z somewhere that outlives bar gives a type error
}

Alex Aiken CS 242 Lecture 11

Example: Immutable Borrow

fn a() {
let x = Foo.new(); // x is the owner
let y = &x; // y is an immutable borrow of x; x is still the owner
bar(y, y); // pass two immutable borrows to bar
}

fn bar(&a: Foo, &b: Foo) {
 ... = .. a ... // can read from a and b in bar as many times as we like
 ... = ... b ...

}

Alex Aiken CS 242 Lecture 11

Example: Mutable Reference

fn a() {
x = Foo.new(); // x is the owner
y = &mut x; // y is a mutable borrow of x
bar(y); // pass a mutable borrow to bar
}

fn bar(&mut z: Foo) {
 z.f = ... // can mutate z
}

Alex Aiken CS 242 Lecture 11

Example: Mutable Borrow

fn a() {
let x = Foo.new(); // x is the owner
let y = &mut x; // y is a mutable borrow of x
bar(y, y) // Error: Cannot have two mutable borrows of x in scope
}

fn bar(&mut a: Foo, &mut b: Foo) { // since a and b are mutable, they cannot alias
 a.f = ... // can mutate a
 b.f = ... // can mutate b
}

Alex Aiken CS 242 Lecture 11

Borrow Rules

• A borrow cannot outlive its owner
• The lifetime of a borrow is contained within the lifetime of its owner

• Guarantees no dangling references

• A borrow cannot deallocate its object
• That’s what it means to be a borrow and not the unique owner

• There can be one mutable borrow to an object in scope
• There can be any number of immutable borrows
• We relax the linearity restriction to allow any number of readers of an object

Alex Aiken CS 242 Lecture 11

fn a() {
let x = Foo.new(); // x is the owner
let y = &x; // y is an immutable borrow of x; x is still the owner.
bar(y) ; // pass an immutable borrow to bar; the borrow’s lifetime is the lifetime of bar
}

fn bar(&z: Foo) {
 ... = .. z ... // we can read from z in bar as many times as we like
 // global.f = z storing z somewhere that outlives bar will generate a type error
}

Example: Immutable Borrow

Alex Aiken CS 242 Lecture 11

A Problem

fn longest(x: &str, y: &str) -> &str {
 if x.len() > y.len() {
 x
 } else {
 y
 }
}

This Rust function returns the
longer of two strings

As written, the function does not
type check!

Alex Aiken CS 242 Lecture 11

Why?

fn longest(x: &str, y: &str) -> &str {
 if x.len() > y.len() {
 x
 } else {
 y
 }
}

What is the lifetime of the result?

It is either the lifetime of x or the
lifetime of y

How can this lifetime information
be represented?

Alex Aiken CS 242 Lecture 11

Digression: Type Checking If-Then-Else

fn longest(x: &str, y: &str) -> &str {
 if x.len() > y.len() {
 x
 } else {
 y
 }
}

Alex Aiken CS 242 Lecture 11

If-Then-Else requires the types of the two
branches to be the same

Analogously, an ownership type system
requires the lifetimes of the two
branches to be the same

A d e1: Bool

A d e2: T

A d e3: T

A d if e1 then e2 else e3: T

Lifetime Annotations

fn longest<‘a>(x: &’a str, y: &’a str) -> &’a str
{
 if x.len() > y.len() {
 x
 } else {
 y
 }
}

Alex Aiken CS 242 Lecture 11

• The function is templated on a
lifetime annotation

• Requires that the two arguments
have the same lifetime
• And thus the result has that

lifetime, too

• This version type checks

Discussion

• Ownership rules are very restrictive
• Program must be linear in owned objects
• Exactly one owner at all times

• Three techniques help in writing legal programs:
• Using immutable data wherever possible
• Deep copies are OK (cloning)
• Borrowing creates a reference that can be used

• Does not transfer ownership
• Implies a borrowed reference cannot deallocate an object
• The owner cannot deallocate an object until all borrowed references are returned
• Borrowed references have a different syntax and type

Alex Aiken CS 242 Lecture 11

Ownership in Practice

• Ownership has been studied for > 20 years

• Rust is the first full language to support ownership types
• The major new feature

• Experience is that Rust’s ownership system helps
• Enables manually managed memory without the bugs
• Makes it possible to write efficient and correct code
• Ownership types are the key
• Which is not to say ownership is always easy to use

• Programmers need to reason about lifetimes
• Rust’s type inference helps a lot
• But sometimes lifetimes are not inferred and explicit lifetime annotations are needed

Alex Aiken CS 242 Lecture 11

Coda: Interfaces

Alex Aiken CS 242 Lecture 11

Review: Single Inheritance

Class Foo {
 method f(a: WhatsIt, b: WhoseIt) { … some code … }
}

Class Bar inherits Foo {

}

x: Whatsit;
y: Whoseit;
(new Bar).f(x,y) // Bar also provides f, inherited from Foo

Alex Aiken CS 242 Lecture 11

Review: Single Inheritance w/Override

Class Foo {
 method f(a: WhatsIt, b: WhoseIt) { … some code …}
}

Class Bar inherits Foo {
 method f(a: WhatsIt, b: WhoseIt) {… some completely different code … }
}

x: Whatsit;
y: Whoseit;
(new Bar).f(x,y) // Bar provides an f different from Foo’s f, but with the same interface

Alex Aiken CS 242 Lecture 11

Abstract Methods
Class Foo {
 virtual method f(a: WhatsIt, b: WhoseIt); // no code --- only the interface is declared
}

Class Bar inherits Foo {
 method f(a: WhatsIt, b: WhoseIt) {… some code implementing the interface … }
}

Class Bazz inherits Foo { ... another class implementing Foo’s interface in a different way … }

x: Whatsit;
y: Whoseit;
(new Bar).f(x,y)

Alex Aiken CS 242 Lecture 11

The Evolution from Inheritance to Interfaces

• Single inheritance was discovered to be quite limiting
• Only can inherit from one parent class
• But many types would naturally inherit from multiple classes

• A University is both a NonProfit and a School

• Completely abstract classes became popular
• All methods are abstract
• Separate declaration of the interface from all implementations

• Recently object systems have moved to
• Declare interfaces, a named set of abstract methods
• Types can implement any number of (previously declared) interfaces

• E.g., University implements NonProfit, School { … }

Alex Aiken CS 242 Lecture 11

Rust Traits

• Traits are the way to do inheritance of functionality in Rust
• Traits declare abstract interfaces
• Types implement these interfaces

• Inspired by Haskell type classes
• And similar to Java interfaces

Alex Aiken CS 242 Lecture 11

Traits Example (from ``Rust By Example’’)
struct Sheep { naked: bool, name: &'static str }

trait Animal {

 // Traits declare types of methods any implementor type must provide

// Associated function signature; `Self` refers to the implementor type.

 fn new(name: &'static str) -> Self;

 fn name(&self) -> &'static str;

 fn noise(&self) -> &'static str;

 // Traits can provide default method definitions.

 fn talk(&self) {
 println!("{} says {}", self.name(), self.noise()); }

}

impl Sheep {

 fn is_naked(&self) -> bool { self.naked }

 fn shear(&mut self) {

 if self.is_naked() {

 println!("{} is already naked...", self.name()); } else {

 println!("{} gets a haircut!", self.name);

 self.naked = true;

 }}}

// An implementation must explicitly declare what trait it is implementing

impl Animal for Sheep {

 // `Self` is the implementor type: `Sheep`.

 fn new(name: &'static str) -> Sheep {

 Sheep { name: name, naked: false }

 }

 fn name(&self) -> &'static str { self.name }

 fn noise(&self) -> &'static str {

 if self.is_naked() { "baaaaah?” } else { "baaaaah!” }
 }

// Override default method.

 fn talk(&self) { println!("{} pauses briefly... {}", self.name, self.noise()); }

}

Alex Aiken CS 242 Lecture 11

Summary

• Rust provides static memory management
• Memory safety with the efficiency of C/C++ code
• Key is reasoning about different classes of pointers (owners/borrows) and

their lifetimes

• And a modern interface system
• Traits allow declaration/implementation of flexible class-like interfaces

• Rapidly gaining ground in industry
• There are millions of Rust programmers today

Alex Aiken CS 242 Lecture 11

