
Objects
CS242

Lecture 10

Alex Aiken CS 242 Lecture 10

One More Time: The Lambda Calculus …

e → x | λx.e | e e

• The lambda calculus has served as a model for procedural and
functional languages
• Extremely well-studied

• Naturally people have used it to study object-oriented languages, too

Alex Aiken CS 242 Lecture 10

Records

• Records are collections of named fields with values.

[flag = False, value = 42]

• The order of the fields is unimportant
• [value = 42 , flag = False] is the same record

Alex Aiken CS 242 Lecture 10

What Are Records?

• Records with a fixed set of fields are a special case of algebraic data
types

Type Rec =
 flag: Bool
 value: Int

• Records are standard in many procedural languages
• Well-studied in the lambda calculus

Alex Aiken CS 242 Lecture 10

What is an Object?

• An object is a collection of fields and methods on those fields

• Can we use records to implement objects?

• Seems to work fine for the fields:
[flag = False, value = 42]

• The type is analogous to the type of the corresponding algebraic data type
[flag: Bool, value: Int]

• A record type
• The type analog of a record: A collection of unordered fields, each with a type

Alex Aiken CS 242 Lecture 10

What About Methods?

• Conceptually an object is a record of both fields and methods
[flag = False, value = 42, add(i: Int): Int]

• For types we use function types
[flag: Bool, value: Int, add: Int → Int]

Alex Aiken CS 242 Lecture 10

But What About Self Parameters?

In every object-oriented language, methods take the self parameter either as
an explicit or implicit argument

Class Pair {
 x : Bool
 y : Int
 first(): self.x
 second(): self.y
}

(new Pair(true,42)).second = 42

Alex Aiken CS 242 Lecture 10

But What About Self Parameters?

• In every object-oriented language, methods take the self parameter
either as an explicit or implicit argument
• The self parameter needs to be reflected in the type

X = [x: Bool, y: Int, first: X → Bool, second: X → Int]

• Implication: Because every method of an object o takes o as an
argument, object types are recursive

Alex Aiken CS 242 Lecture 10

Discussion

• Object types are more complex than might first be supposed
• Inherent in the nature of the object-oriented model

• But do recursive types pose a problem?
• Not by themselves. Recursive types are well-defined.
• But this is a hint that things might not be so simple …

Alex Aiken CS 242 Lecture 10

The Grand Idea

• Goal: Develop a semantics and type system(s) for objects based on the
lambda calculus with records and recursive types

• Many people worked on this program over years
• Scores, maybe hundreds, of papers

• And, surprisingly, it failed

• The conclusion was that object-orientation is best explained with a native
object calculus.
• Specifically, typed lambda calculus has trouble encoding typed object systems

Alex Aiken CS 242 Lecture 10

Object Calculus

• Introduce in the mid-1990’s by Martin Abadi and Luca Cardelli.

Alex Aiken CS 242 Lecture 10

Untyped Object Calculus Syntax

• An object is a finite map from field names to methods that produce objects
 o = […, li = !(x) bi, …]

• Here
• li is a field name
• !(x) bi is a method where x is the self object and bi is the body

• Operations:
• Selection: o.li → bi[x := o]
• Override: o.li <= !(y) b → o with li = !(y) b

Alex Aiken CS 242 Lecture 10

Fields vs. Methods

• We don’t need to distinguish fields and methods

• Because fields are just constant methods

• Example: o = [l = !(x) 3]

• Field lookup
• o.l → 3[x := o] = 3

• Field update:
• o.l <= !(y) 4 → [l = !(y) 4]

Alex Aiken CS 242 Lecture 10

Recursion

• Critical to the object calculus is that the self object can appear in
method bodies
• Allows recursive behavior

• Examples
• o = [l = !(x) x.l]
• o.l → x.l [x := o] = o.l →…

• o = [l = !(x) x]
• o.l → x [x := o] = o

Alex Aiken CS 242 Lecture 10

Computing with Override

• Programmatic use of override is a key feature of the object calculus

o = [l = !(y) (y.l <= !(x) x)]

o.l → o.l <= !(x) x → [l = !(x) x]

Alex Aiken CS 242 Lecture 10

Examples

Recap: Implementing fields
 o = [l = !(x) 3]
 o.l <= !(y) 4 → [l = !(y) 4]

Pairs
 o = [first = !(x) 1, second = !(x) 2]
 o.first → 1 [x := o] = 1
 o.second → 2 [x := o] = 2

Alex Aiken CS 242 Lecture 10

Examples

Predicates
o = [istrue = !(x) true,
 setfalse = !(x) (x.istrue <= !(x) false),
 settrue = !(x) (x.istrue <= !(x) true)]

o.istrue → true

o.setfalse.istrue →
(o.istrue <= !(x) false).istrue →
false

o.setfalse.settrue.istrue →
(o.istrue <= !(x) false).settrue. istrue →
((o.istrue <= !(x) false).istrue <= !(x) true).settrue.istrue →
(o.istrue <= !(x) true).istrue →
true

Alex Aiken CS 242 Lecture 10

Backup Methods

o = [retrieve = !(x) x,
 backup = !(x) x.retrieve <= !(y) x]

Every time the backup method is called, it modifies the retrieve
method to return the self object at the time the backup method was
invoked.

Alex Aiken CS 242 Lecture 10

Natural Numbers

zero = [iszero = !(x) true,
 pred = !(x) x,
 succ = !(x) (x.iszero <= !(y) false).pred <= !(y) x]

Examples:
zero.iszero → true [x := …] = true
zero.succ.iszero → [iszero = !(y) false, pred = zero, …].iszero → false
zero.succ.pred.iszero →[iszero = !(y) false, pred = zero, …].pred.iszero →
zero.iszero → true

Alex Aiken CS 242 Lecture 10

Encoding Lambda Calculus with Objects

T(x) = x
T(e1 e2) = (T(e1).arg <= !(y) T(e2)).val
T(λx.e) = [arg = !(x) x.arg, val = !(x)T(e)[x := x.arg]]

The idea:
A function is represented as an object of two fields, a function argument and the function
body.

When the function is defined, the argument can be anything (here it is an infinite loop).
When the function is applied, the argument is overridden with the actual argument and
the body is evaluated.

Note how the function argument is shared with the function body.

Alex Aiken CS 242 Lecture 10

Example
Translation
T((λx.x) y) =
(T(λx.x).arg <= !(z) T(y)).val =
(T(λx.x).arg <= !(z) y).val =
([arg = !(x) x.arg, val = !(x)T(x)[x := x.arg]].arg <= !(z) y).val =
([arg = !(x) x.arg, val = !(x)x [x := x.arg]].arg <= !(z) y).val =
([arg = !(x) x.arg, val = !(x) x.arg].arg <= !(z) y).val

Evaluation
([arg = !(x) x.arg, val = !(x) x.arg].arg <= !(z) y).val →
([arg = !(z) y, val = !(x) x.arg]).val →
([arg = !(z) y, val = !(x) x.arg]).arg →
y

Alex Aiken CS 242 Lecture 10

Encoding Objects with Lambda Calculus

• Represent objects as list of pairs
• First component of the pair is a field/method label (an integer)
• Second component is the value of the field/method

• Field selection
• o.i = (o (λh.λt. if (fst h) == i then (snd h) else t) λx.x)

• Method override
• o.i <= f = cons (i,f) o

Alex Aiken CS 242 Lecture 10

Bottom Line

• Untyped object systems and untyped lambda calculus are easily
converted one to the other
• Equivalent in computational power

• But the same is not true for typed versions because of override
• Recall the type X = [x: Bool, y: Int, first: X → Bool, second: X → Int]
• Override can arbitrarily change the method, and therefore the type, of any

field
• At any point in the computation
• Unrestricted override is not a static property

Alex Aiken CS 242 Lecture 10

Typed Object Systems

Alex Aiken CS 242 Lecture 10

Subtyping

• The distinctive feature of type object-oriented languages is subtyping

• A < B if an object of type A can be used in any context where an
object of type B is required
• Concretely, A has all the fields/methods of B

• Subtyping is a form of type polymorphism
• Different from parametric polymorpism

Alex Aiken CS 242 Lecture 10

Subtyping Rule for Object Calculus

Alex Aiken CS 242 Lecture 10

[Subtyping]
E d o: [l1 : B1, …, ln : Bn] m < n

E d o: [l1 : B1, …, lm : Bm]

A Type Checking Problem

• When are an object’s methods defined?
• When can override be performed?

• To have both static type checking and override, these features are
often split in type object-oriented languages so that all overrides
happen before any computation is done.

Alex Aiken CS 242 Lecture 8

Solution #1: Mainstream Typed OO

• Restrict the definition of methods to a first phase before methods are
typed
• Mechanisms like inheritance, static override, restrictions on modifying

superclasses, dynamic update only of fields
• Guarantees the assembly of the object’s type is independent of program

evaluation
• Type checking happens after assembly of the methods and before the

program executes

• Examples: C++, Java

Alex Aiken CS 242 Lecture 8

Java Example
class Foo{
 public void hello() {
 System.out.println(”Hello world!");
 }
}
class Bar extends Foo {
 public void hello(){
 System.out.println(”Hello, user!");
 }
 public void goodbye(){
 System.out.println(”Hello, user!");
 }
}

• Class Bar inherits from class Foo

• Inheritance in Java is a static property
• A class and its parent must be explicitly named

• Method override is completely resolved at compile
time
• Even before type checking!
• We only need the names of the classes and methods
• The method in the subclass replaces the overridden

method in the parent class

• There are type restrictions
• A method f must have the same signature as method f

in the parent class
• But this can be checked after overriding is resolved

Alex Aiken CS 242 Lecture 8

Solution #2: Functional + OO

• Add object-oriented features to a functional language
• Add primitive OO features to the lambda calculus

• Let the functional language do most of the work
• The OO extensions are a thin veneer
• Record types (or something similar) handles the typing
• Higher-order functions give other ways to work around OO restrictions

• Every functional language has added an object system
• Examples: OCaml, Haskell

Alex Aiken CS 242 Lecture 8

OCaml

• Ocaml has a mix of functional, object-oriented and imperative
features

• Fundamentally it is a functional language
• Based on lambda calculus
• OO features are implemented by translation to lambda calculus
• Using records and record types
• Call-by-value

Alex Aiken CS 242 Lecture 8

OCaml

let counter =
 object
 val mutable x = 0
 method get = x
 method inc = x <- x + 1
 end;
Type checker: val counter : < get : int, inc : unit >

Note that OCaml is more dynamic than Java and C++
 Some new kinds of objects can be computed, not just statically defined
 But still statically typed

Alex Aiken CS 242 Lecture 8

OCaml

let counter =
 object (s)
 val mutable x = 0
 method get = s#x
 method inc = x <- x + 1
 end;
Type checker: val counter : < get : int, inc : unit >

Objects can have a self parameter, but it must be explicitly bound

Alex Aiken CS 242 Lecture 8

OCaml

class counter =
 object (s)
 val mutable x = 0
 method get = s#x
 method inc = x <- x + 1
 end;
Type checker: class counter : < get : int, inc : unit >

Classes can also be declared at the top level. Unlike immediate objects,
classes can be inherited.

Alex Aiken CS 242 Lecture 8

Solution #3: OO + Functional

• Add functional features to an OO language

• Starting from a language with objects and imperative features, add
• first-class functions
• parametric polymorphism, if the language is typed

• Every object-oriented language has added first-class functions
• Examples: Java and C++

Alex Aiken CS 242 Lecture 8

Lambdas in Java

• A lambda abstraction in Java is written

 (arg) -> { function body }

• Just like lambda calculus:
• The function is anonymous (doesn’t have a name)
• Takes a single argument (arg in the scheme above)

• Unlike lambda calculus:
• The function body can make use of all Java features, include objects and state

Alex Aiken CS 242 Lecture 8

Java Lambda Example

-- print out each number in an ArrayList using forEach
numbers.forEach((n) -> { System.out.println(n); }

-- prints ``Hello?’’
mkquestion = (s) -> s + “?”;
ask = mkquestion.run(``Hello’’)

Alex Aiken CS 242 Lecture 8

Parametric Polymorphism in C++

template <class T>
 class MyNum {
 private:
 T val;
 public:
 MyNum(T n) : val(n) {}
 T Square() { return val * val; }
};

MyNum<int> MyNum(42);
MyNum<float> MyNum(42.0);
MyNum<Foo> MyNum (Foo); -- type error!

• A template parameterizes a block of code
on a type
• Doesn’t have to be a class, but often is

• Type checking is done by instantiating the
template and then type checking the
body with the instance types substituted
for the type parameters of the template

• Closely related to polymorphic types ala
Lecture 6

Alex Aiken CS 242 Lecture 8

Solution #4: Dynamically Typed

• Give up on static typing
• Go with the simplicity of dynamically typed languages

• Noticeably more popular in the OO world
• Because static typing ends up being more complex

• Examples: Python, Javascript
• These systems are reminiscent of the untyped object calculus

Alex Aiken CS 242 Lecture 8

Prototypes

• Prototype-based object systems are found only in dynamically typed
languages

• A prototype is a concrete object --- not a class

• In a prototype system, new objects are created by copying a
prototype
• That’s all!
• New subtypes are defined by creating new prototypes that add behavior to a

base prototype object

Alex Aiken CS 242 Lecture 8

Javascript Example

function Cat(name) {
 this.name = name;
 this.sound = function() { print(`meow!’) }; }

function Dog(name) {
 this.name = name;
 this.sound = function() { print(`woof!’) }; }

A = Cat(“Sleepy”);
B = Dog(“Grumpy”);

-- Add a new property for cat
A.prototype.fur = “Black”;

-- change the prototype for cats
A.prototype = B.prototype
A.sound()
Woof

Alex Aiken CS 242 Lecture 8

Python Classes

class Dog:
 def bark(self):
 print(“Woof!”);

rover = Dog()
rover.bark()

Classes in Python have
 attributes (not shown)
 methods

All pretty conventional!

But not type checking …

Alex Aiken CS 242 Lecture 8

Prototypes vs Classes

• In a prototype object system, every object has a prototype

• Objects inherit from other objects
• With null being the initial prototype
• Any referenced property is searched for in this prototype chain

• Since prototypes are implemented by objects, it is possible to
• Add new properties, both fields and methods
• Even replace the prototype with a new one
• All dynamically

• Python has classes and added a prototype system
• Javascript has prototypes and added classes
• Since the languages are very dynamic, possible to implement any object system one wants

• Classes and prototypes are the popular ones

Alex Aiken CS 242 Lecture 8

Summary

• There has been a convergence of language features over the last
decade
• Mainstream languages have OO, functional, and imperative features

• There is no one best way to combine OO and functional features
• Common cases all work in all languages
• But there are different restrictions depending on whether the starting point is

a functional language or an object-oriented language
• Biggest divide is typed vs. untyped

Alex Aiken CS 242 Lecture 8

